类弹性蛋白多肽和生物活性玻璃改性硅酸钙水泥的物理性能。

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Jiyoung Kwon, Hyun-Jung Kim
{"title":"类弹性蛋白多肽和生物活性玻璃改性硅酸钙水泥的物理性能。","authors":"Jiyoung Kwon, Hyun-Jung Kim","doi":"10.3390/jfb16050188","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional calcium silicate cement (CSC) formulations often exhibit insufficient mechanical strength and low initial stability. This study aimed to develop an organic-inorganic hybrid biomaterial by incorporating an elastin-like polypeptide (ELP) (V125E8) and bioactive glass (BG) (63S) into CSC to improve its mechanical properties and wash-out resistance during the initial setting. Experimental groups included ProRoot MTA (Dentsply Sirona, USA) as a control (0BG), inorganic hybrids containing BG (2% or 5%; 2BG, 5BG), and organic-inorganic hybrids combining BG (2% or 5%; 2BG-L, 5BG-L) with a 10 wt% ELP solution. The compressive strength, microhardness, and wash-out resistance of the specimens were evaluated. The organic-inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments. The organic-inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 5","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Physical Properties of Calcium Silicate Cement Modified with Elastin-like Polypeptides and Bioactive Glass.\",\"authors\":\"Jiyoung Kwon, Hyun-Jung Kim\",\"doi\":\"10.3390/jfb16050188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional calcium silicate cement (CSC) formulations often exhibit insufficient mechanical strength and low initial stability. This study aimed to develop an organic-inorganic hybrid biomaterial by incorporating an elastin-like polypeptide (ELP) (V125E8) and bioactive glass (BG) (63S) into CSC to improve its mechanical properties and wash-out resistance during the initial setting. Experimental groups included ProRoot MTA (Dentsply Sirona, USA) as a control (0BG), inorganic hybrids containing BG (2% or 5%; 2BG, 5BG), and organic-inorganic hybrids combining BG (2% or 5%; 2BG-L, 5BG-L) with a 10 wt% ELP solution. The compressive strength, microhardness, and wash-out resistance of the specimens were evaluated. The organic-inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments. The organic-inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16050188\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16050188","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的硅酸钙水泥(CSC)配方往往机械强度不足,初始稳定性较低。本研究旨在通过在CSC中加入弹性蛋白样多肽(ELP) (V125E8)和生物活性玻璃(BG) (63S)来开发一种有机-无机杂化生物材料,以改善其初始凝固时的机械性能和耐冲蚀性。试验组包括ProRoot MTA (Dentsply Sirona, USA)作为对照(0BG),含BG(2%或5%;2BG, 5BG)和有机-无机混合BG(2%或5%;2BG-L, 5BG-L),加入10%的ELP溶液。测试了试样的抗压强度、显微硬度和抗冲刷性能。有机-无机杂交组(2BG- l和5BG- l)的抗压强度和显微硬度显著高于对照组(0BG)和纯无机组(2BG和5BG)。此外,ELP的掺入显著提高了抗冲蚀性,最大限度地减少了水环境中初始凝固过程中材料的崩解。有机-无机杂交组(2BG- l和5BG- l)的抗压强度和显微硬度显著高于对照组(0BG)和纯无机组(2BG和5BG)。此外,ELP的掺入显著提高了抗冲蚀性,最大限度地减少了水环境中初始凝固过程中材料的崩解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Physical Properties of Calcium Silicate Cement Modified with Elastin-like Polypeptides and Bioactive Glass.

Conventional calcium silicate cement (CSC) formulations often exhibit insufficient mechanical strength and low initial stability. This study aimed to develop an organic-inorganic hybrid biomaterial by incorporating an elastin-like polypeptide (ELP) (V125E8) and bioactive glass (BG) (63S) into CSC to improve its mechanical properties and wash-out resistance during the initial setting. Experimental groups included ProRoot MTA (Dentsply Sirona, USA) as a control (0BG), inorganic hybrids containing BG (2% or 5%; 2BG, 5BG), and organic-inorganic hybrids combining BG (2% or 5%; 2BG-L, 5BG-L) with a 10 wt% ELP solution. The compressive strength, microhardness, and wash-out resistance of the specimens were evaluated. The organic-inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments. The organic-inorganic hybrid groups (2BG-L and 5BG-L) exhibited significantly higher compressive strength and microhardness than the control (0BG) and inorganic-only groups (2BG and 5BG). Additionally, the incorporation of ELP markedly improved wash-out resistance, minimizing material disintegration during the initial setting in aqueous environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信