Paula Sofía Muñoz, Ana Sofía Orozco, Jaime Pabón, Daniel Gómez, Ricardo Salazar-Cabrera, Jesús D Cerón, Diego M López, Bernd Blobel
{"title":"使用批学习和流学习算法的日常生活活动自动检测和分类的比较评价。","authors":"Paula Sofía Muñoz, Ana Sofía Orozco, Jaime Pabón, Daniel Gómez, Ricardo Salazar-Cabrera, Jesús D Cerón, Diego M López, Bernd Blobel","doi":"10.3390/jpm15050208","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Activities of Daily Living (ADLs) are crucial for assessing an individual's autonomy, encompassing tasks such as eating, dressing, and moving around, among others. Predicting these activities is part of health monitoring, elderly care, and intelligent systems, improving quality of life, and facilitating early dependency detection, all of which are relevant components of personalized health and social care. However, the automatic classification of ADLs from sensor data remains challenging due to high variability in human behavior, sensor noise, and discrepancies in data acquisition protocols. These challenges limit the accuracy and applicability of existing solutions. This study details the modeling and evaluation of real-time ADL classification models based on batch learning (BL) and stream learning (SL) algorithms. <b>Methods:</b> The methodology followed is the Cross-Industry Standard Process for Data Mining (CRISP-DM). The models were trained with a comprehensive dataset integrating 23 ADL-centric datasets using accelerometers and gyroscopes data. The data were preprocessed by applying normalization and sampling rate unification techniques, and finally, relevant sensor locations on the body were selected. <b>Results:</b> After cleaning and debugging, a final dataset was generated, containing 238,990 samples, 56 activities, and 52 columns. The study compared models trained with BL and SL algorithms, evaluating their performance under various classification scenarios using accuracy, area under the curve (AUC), and F1-score metrics. Finally, a mobile application was developed to classify ADLs in real time (feeding data from a dataset). <b>Conclusions:</b> The outcome of this study can be used in various data science projects related to ADL and Human activity recognition (HAR), and due to the integration of diverse data sources, it is potentially useful to address bias and improve generalizability in Machine Learning models. The principal advantage of online learning algorithms is dynamically adapting to data changes, representing a significant advance in personal autonomy and health care monitoring.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of Automatic Detection and Classification of Daily Living Activities Using Batch Learning and Stream Learning Algorithms.\",\"authors\":\"Paula Sofía Muñoz, Ana Sofía Orozco, Jaime Pabón, Daniel Gómez, Ricardo Salazar-Cabrera, Jesús D Cerón, Diego M López, Bernd Blobel\",\"doi\":\"10.3390/jpm15050208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Activities of Daily Living (ADLs) are crucial for assessing an individual's autonomy, encompassing tasks such as eating, dressing, and moving around, among others. Predicting these activities is part of health monitoring, elderly care, and intelligent systems, improving quality of life, and facilitating early dependency detection, all of which are relevant components of personalized health and social care. However, the automatic classification of ADLs from sensor data remains challenging due to high variability in human behavior, sensor noise, and discrepancies in data acquisition protocols. These challenges limit the accuracy and applicability of existing solutions. This study details the modeling and evaluation of real-time ADL classification models based on batch learning (BL) and stream learning (SL) algorithms. <b>Methods:</b> The methodology followed is the Cross-Industry Standard Process for Data Mining (CRISP-DM). The models were trained with a comprehensive dataset integrating 23 ADL-centric datasets using accelerometers and gyroscopes data. The data were preprocessed by applying normalization and sampling rate unification techniques, and finally, relevant sensor locations on the body were selected. <b>Results:</b> After cleaning and debugging, a final dataset was generated, containing 238,990 samples, 56 activities, and 52 columns. The study compared models trained with BL and SL algorithms, evaluating their performance under various classification scenarios using accuracy, area under the curve (AUC), and F1-score metrics. Finally, a mobile application was developed to classify ADLs in real time (feeding data from a dataset). <b>Conclusions:</b> The outcome of this study can be used in various data science projects related to ADL and Human activity recognition (HAR), and due to the integration of diverse data sources, it is potentially useful to address bias and improve generalizability in Machine Learning models. The principal advantage of online learning algorithms is dynamically adapting to data changes, representing a significant advance in personal autonomy and health care monitoring.</p>\",\"PeriodicalId\":16722,\"journal\":{\"name\":\"Journal of Personalized Medicine\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personalized Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/jpm15050208\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15050208","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Comparative Evaluation of Automatic Detection and Classification of Daily Living Activities Using Batch Learning and Stream Learning Algorithms.
Background/Objectives: Activities of Daily Living (ADLs) are crucial for assessing an individual's autonomy, encompassing tasks such as eating, dressing, and moving around, among others. Predicting these activities is part of health monitoring, elderly care, and intelligent systems, improving quality of life, and facilitating early dependency detection, all of which are relevant components of personalized health and social care. However, the automatic classification of ADLs from sensor data remains challenging due to high variability in human behavior, sensor noise, and discrepancies in data acquisition protocols. These challenges limit the accuracy and applicability of existing solutions. This study details the modeling and evaluation of real-time ADL classification models based on batch learning (BL) and stream learning (SL) algorithms. Methods: The methodology followed is the Cross-Industry Standard Process for Data Mining (CRISP-DM). The models were trained with a comprehensive dataset integrating 23 ADL-centric datasets using accelerometers and gyroscopes data. The data were preprocessed by applying normalization and sampling rate unification techniques, and finally, relevant sensor locations on the body were selected. Results: After cleaning and debugging, a final dataset was generated, containing 238,990 samples, 56 activities, and 52 columns. The study compared models trained with BL and SL algorithms, evaluating their performance under various classification scenarios using accuracy, area under the curve (AUC), and F1-score metrics. Finally, a mobile application was developed to classify ADLs in real time (feeding data from a dataset). Conclusions: The outcome of this study can be used in various data science projects related to ADL and Human activity recognition (HAR), and due to the integration of diverse data sources, it is potentially useful to address bias and improve generalizability in Machine Learning models. The principal advantage of online learning algorithms is dynamically adapting to data changes, representing a significant advance in personal autonomy and health care monitoring.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.