炎性肠病中的肠道类器官:进展、应用和未来方向。

IF 4.6 2区 生物学 Q2 CELL BIOLOGY
Frontiers in Cell and Developmental Biology Pub Date : 2025-05-12 eCollection Date: 2025-01-01 DOI:10.3389/fcell.2025.1517121
Jianzhen Ren, Silin Huang
{"title":"炎性肠病中的肠道类器官:进展、应用和未来方向。","authors":"Jianzhen Ren, Silin Huang","doi":"10.3389/fcell.2025.1517121","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), characterized by chronic gastrointestinal inflammation, is a significant global health challenge. Traditional models often fail to accurately reflect human pathophysiology, leading to suboptimal treatments. This review provides an overview of recent advancements in intestinal organoid technology and its role in IBD research. Organoids, derived from patient-specific or pluripotent stem cells, retain the genetic, epigenetic, and structural characteristics of the native gut, allowing for precise modeling of key aspects of IBD. Innovations in CRISPR editing, organoid-microbe co-cultures, and organ-on-a-chip systems have enhanced the physiological relevance of these models, facilitating drug discovery and personalized therapy screening. However, challenges such as vascularization deficits and the need for standardized protocols remain. This review underscores the need for interdisciplinary efforts to bridge the gap between models and the complex reality of IBD. Future directions include the development of scalable vascularized models and robust regulatory frameworks to accelerate therapeutic translation. Organoids hold promise for unraveling IBD heterogeneity and transforming disease management.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1517121"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104276/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intestinal organoids in inflammatory bowel disease: advances, applications, and future directions.\",\"authors\":\"Jianzhen Ren, Silin Huang\",\"doi\":\"10.3389/fcell.2025.1517121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD), characterized by chronic gastrointestinal inflammation, is a significant global health challenge. Traditional models often fail to accurately reflect human pathophysiology, leading to suboptimal treatments. This review provides an overview of recent advancements in intestinal organoid technology and its role in IBD research. Organoids, derived from patient-specific or pluripotent stem cells, retain the genetic, epigenetic, and structural characteristics of the native gut, allowing for precise modeling of key aspects of IBD. Innovations in CRISPR editing, organoid-microbe co-cultures, and organ-on-a-chip systems have enhanced the physiological relevance of these models, facilitating drug discovery and personalized therapy screening. However, challenges such as vascularization deficits and the need for standardized protocols remain. This review underscores the need for interdisciplinary efforts to bridge the gap between models and the complex reality of IBD. Future directions include the development of scalable vascularized models and robust regulatory frameworks to accelerate therapeutic translation. Organoids hold promise for unraveling IBD heterogeneity and transforming disease management.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"13 \",\"pages\":\"1517121\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104276/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2025.1517121\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1517121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以慢性胃肠道炎症为特征的炎症性肠病(IBD)是一项重大的全球健康挑战。传统模型往往不能准确反映人体病理生理,导致治疗不理想。本文综述了肠道类器官技术的最新进展及其在IBD研究中的作用。类器官来源于患者特异性或多能干细胞,保留了天然肠道的遗传、表观遗传和结构特征,允许对IBD的关键方面进行精确建模。CRISPR编辑、类器官-微生物共培养和器官芯片系统的创新增强了这些模型的生理相关性,促进了药物发现和个性化治疗筛选。然而,诸如血管化缺陷和标准化方案的需求等挑战仍然存在。这篇综述强调了跨学科努力的必要性,以弥合IBD模型与复杂现实之间的差距。未来的方向包括开发可扩展的血管化模型和强大的监管框架,以加速治疗转化。类器官有望揭示IBD的异质性并改变疾病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intestinal organoids in inflammatory bowel disease: advances, applications, and future directions.

Inflammatory bowel disease (IBD), characterized by chronic gastrointestinal inflammation, is a significant global health challenge. Traditional models often fail to accurately reflect human pathophysiology, leading to suboptimal treatments. This review provides an overview of recent advancements in intestinal organoid technology and its role in IBD research. Organoids, derived from patient-specific or pluripotent stem cells, retain the genetic, epigenetic, and structural characteristics of the native gut, allowing for precise modeling of key aspects of IBD. Innovations in CRISPR editing, organoid-microbe co-cultures, and organ-on-a-chip systems have enhanced the physiological relevance of these models, facilitating drug discovery and personalized therapy screening. However, challenges such as vascularization deficits and the need for standardized protocols remain. This review underscores the need for interdisciplinary efforts to bridge the gap between models and the complex reality of IBD. Future directions include the development of scalable vascularized models and robust regulatory frameworks to accelerate therapeutic translation. Organoids hold promise for unraveling IBD heterogeneity and transforming disease management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信