DFST-UNet:双域融合Swin变压器U-Net图像伪造定位。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-05-17 DOI:10.3390/e27050535
Jianhua Yang, Anjun Xie, Tao Mai, Yifang Chen
{"title":"DFST-UNet:双域融合Swin变压器U-Net图像伪造定位。","authors":"Jianhua Yang, Anjun Xie, Tao Mai, Yifang Chen","doi":"10.3390/e27050535","DOIUrl":null,"url":null,"abstract":"<p><p>Image forgery localization is critical in defending against the malicious manipulation of image content, and is attracting increasing attention worldwide. In this paper, we propose a Dual-domain Fusion Swin Transformer U-Net (DFST-UNet) for image forgery localization. DFST-UNet is built on a U-shaped encoder-decoder architecture. Swin Transformer blocks are integrated into the U-Net architecture to capture long-range context information and perceive forged regions at different scales. Considering the fact that high-frequency forgery information is an essential clue for forgery localization, a dual-stream encoder is proposed to comprehensively expose forgery clues in both the RGB domain and the frequency domain. A novel high-frequency feature extractor module (HFEM) is designed to extract robust high-frequency features. A hierarchical attention fusion module (HAFM) is designed to effectively fuse the dual-domain features. Extensive experimental results demonstrate the superiority of DFST-UNet over the state-of-the-art methods in the task of image forgery localization.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110530/pdf/","citationCount":"0","resultStr":"{\"title\":\"DFST-UNet: Dual-Domain Fusion Swin Transformer U-Net for Image Forgery Localization.\",\"authors\":\"Jianhua Yang, Anjun Xie, Tao Mai, Yifang Chen\",\"doi\":\"10.3390/e27050535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image forgery localization is critical in defending against the malicious manipulation of image content, and is attracting increasing attention worldwide. In this paper, we propose a Dual-domain Fusion Swin Transformer U-Net (DFST-UNet) for image forgery localization. DFST-UNet is built on a U-shaped encoder-decoder architecture. Swin Transformer blocks are integrated into the U-Net architecture to capture long-range context information and perceive forged regions at different scales. Considering the fact that high-frequency forgery information is an essential clue for forgery localization, a dual-stream encoder is proposed to comprehensively expose forgery clues in both the RGB domain and the frequency domain. A novel high-frequency feature extractor module (HFEM) is designed to extract robust high-frequency features. A hierarchical attention fusion module (HAFM) is designed to effectively fuse the dual-domain features. Extensive experimental results demonstrate the superiority of DFST-UNet over the state-of-the-art methods in the task of image forgery localization.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12110530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27050535\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27050535","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

图像伪造定位是防范恶意篡改图像内容的关键,在世界范围内受到越来越多的关注。本文提出了一种用于图像伪造定位的双域融合Swin - Transformer U-Net (DFST-UNet)。DFST-UNet建立在u型编码器-解码器架构上。Swin Transformer模块集成到U-Net体系结构中,以捕获远程上下文信息并感知不同尺度的伪造区域。考虑到高频伪造信息是伪造定位的重要线索,提出了一种双流编码器,在RGB域和频域全面暴露伪造线索。设计了一种新型高频特征提取模块(HFEM),用于鲁棒高频特征的提取。设计了一种分层注意力融合模块(HAFM)来有效地融合双域特征。大量的实验结果证明了DFST-UNet在图像伪造定位任务中优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFST-UNet: Dual-Domain Fusion Swin Transformer U-Net for Image Forgery Localization.

Image forgery localization is critical in defending against the malicious manipulation of image content, and is attracting increasing attention worldwide. In this paper, we propose a Dual-domain Fusion Swin Transformer U-Net (DFST-UNet) for image forgery localization. DFST-UNet is built on a U-shaped encoder-decoder architecture. Swin Transformer blocks are integrated into the U-Net architecture to capture long-range context information and perceive forged regions at different scales. Considering the fact that high-frequency forgery information is an essential clue for forgery localization, a dual-stream encoder is proposed to comprehensively expose forgery clues in both the RGB domain and the frequency domain. A novel high-frequency feature extractor module (HFEM) is designed to extract robust high-frequency features. A hierarchical attention fusion module (HAFM) is designed to effectively fuse the dual-domain features. Extensive experimental results demonstrate the superiority of DFST-UNet over the state-of-the-art methods in the task of image forgery localization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信