Liton Devnath, Puneet Arora, Anita Carraro, Jagoda Korbelik, Mira Keyes, Gang Wang, Martial Guillaud, Calum MacAulay
{"title":"利用深度学习识别前列腺上皮细胞。","authors":"Liton Devnath, Puneet Arora, Anita Carraro, Jagoda Korbelik, Mira Keyes, Gang Wang, Martial Guillaud, Calum MacAulay","doi":"10.3390/cells14100737","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is becoming an integral part of pathological assessment and diagnostic procedures in modern pathology. As most prostate cancers (PCa) arise from glandular epithelial tissue, an AI-based methodology has been developed to recognize glandular epithelial nuclei in prostate biopsy tissue. An integrated machine-learning network, named GlandNet, was developed to correctly recognize the epithelial cells within prostate glands using cell-centric patches selected from the core biopsy specimens. Feulgen-Thionin (a DNA stoichiometric label) was used to stain biopsy sections (4-7 µm in thickness) from 82 active surveillance patients diagnosed with PCa. Images of these sections were human-annotated, and the resultant dataset consisted of 1,264,772 segmented, cell-centric nuclei patches, of which 449,879 were centered on epithelial gland nuclei from 110 needle biopsies (training set: <i>n</i> = 66; validation set: <i>n</i> = 22; and test set: <i>n</i> = 22). The training of GlandNet used semi-supervised machine-learning knowledge of the training and validation cohorts and integrated both human and AI predictions to enhance its performance on the test cohort. The performance was evaluated against a consensus deliberation from three observers. The GlandNet demonstrated an average accuracy, sensitivity, specificity, and F1-score of 94.1%, 95.7%, 87.8%, and 95.2%, respectively, when tested on the 20,735 glandular cells found in the three needle biopsies with the visually best consensus predictions. Conversely, the average accuracy, sensitivity, specificity, and F1-score were 90.9%, 86.4%, 94.0%, and 89.7% when assessed on 57,217 cells found in the three needle biopsies with the visually worst consensus predictions. GlandNet is a first-generation AI with an excellent ability to differentiate between epithelial and stromal nuclei in core biopsies from patients with early prostate cancer.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recognizing Epithelial Cells in Prostatic Glands Using Deep Learning.\",\"authors\":\"Liton Devnath, Puneet Arora, Anita Carraro, Jagoda Korbelik, Mira Keyes, Gang Wang, Martial Guillaud, Calum MacAulay\",\"doi\":\"10.3390/cells14100737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is becoming an integral part of pathological assessment and diagnostic procedures in modern pathology. As most prostate cancers (PCa) arise from glandular epithelial tissue, an AI-based methodology has been developed to recognize glandular epithelial nuclei in prostate biopsy tissue. An integrated machine-learning network, named GlandNet, was developed to correctly recognize the epithelial cells within prostate glands using cell-centric patches selected from the core biopsy specimens. Feulgen-Thionin (a DNA stoichiometric label) was used to stain biopsy sections (4-7 µm in thickness) from 82 active surveillance patients diagnosed with PCa. Images of these sections were human-annotated, and the resultant dataset consisted of 1,264,772 segmented, cell-centric nuclei patches, of which 449,879 were centered on epithelial gland nuclei from 110 needle biopsies (training set: <i>n</i> = 66; validation set: <i>n</i> = 22; and test set: <i>n</i> = 22). The training of GlandNet used semi-supervised machine-learning knowledge of the training and validation cohorts and integrated both human and AI predictions to enhance its performance on the test cohort. The performance was evaluated against a consensus deliberation from three observers. The GlandNet demonstrated an average accuracy, sensitivity, specificity, and F1-score of 94.1%, 95.7%, 87.8%, and 95.2%, respectively, when tested on the 20,735 glandular cells found in the three needle biopsies with the visually best consensus predictions. Conversely, the average accuracy, sensitivity, specificity, and F1-score were 90.9%, 86.4%, 94.0%, and 89.7% when assessed on 57,217 cells found in the three needle biopsies with the visually worst consensus predictions. GlandNet is a first-generation AI with an excellent ability to differentiate between epithelial and stromal nuclei in core biopsies from patients with early prostate cancer.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14100737\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14100737","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Recognizing Epithelial Cells in Prostatic Glands Using Deep Learning.
Artificial intelligence (AI) is becoming an integral part of pathological assessment and diagnostic procedures in modern pathology. As most prostate cancers (PCa) arise from glandular epithelial tissue, an AI-based methodology has been developed to recognize glandular epithelial nuclei in prostate biopsy tissue. An integrated machine-learning network, named GlandNet, was developed to correctly recognize the epithelial cells within prostate glands using cell-centric patches selected from the core biopsy specimens. Feulgen-Thionin (a DNA stoichiometric label) was used to stain biopsy sections (4-7 µm in thickness) from 82 active surveillance patients diagnosed with PCa. Images of these sections were human-annotated, and the resultant dataset consisted of 1,264,772 segmented, cell-centric nuclei patches, of which 449,879 were centered on epithelial gland nuclei from 110 needle biopsies (training set: n = 66; validation set: n = 22; and test set: n = 22). The training of GlandNet used semi-supervised machine-learning knowledge of the training and validation cohorts and integrated both human and AI predictions to enhance its performance on the test cohort. The performance was evaluated against a consensus deliberation from three observers. The GlandNet demonstrated an average accuracy, sensitivity, specificity, and F1-score of 94.1%, 95.7%, 87.8%, and 95.2%, respectively, when tested on the 20,735 glandular cells found in the three needle biopsies with the visually best consensus predictions. Conversely, the average accuracy, sensitivity, specificity, and F1-score were 90.9%, 86.4%, 94.0%, and 89.7% when assessed on 57,217 cells found in the three needle biopsies with the visually worst consensus predictions. GlandNet is a first-generation AI with an excellent ability to differentiate between epithelial and stromal nuclei in core biopsies from patients with early prostate cancer.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.