肺癌外泌体介导的耐药机制:分子机制和治疗策略。

IF 2.5 Q3 CELL BIOLOGY
Vita Havryliuk, Karolina Wojtowicz, Maciej Gagat, Agnieszka Żuryń
{"title":"肺癌外泌体介导的耐药机制:分子机制和治疗策略。","authors":"Vita Havryliuk, Karolina Wojtowicz, Maciej Gagat, Agnieszka Żuryń","doi":"10.33594/000000779","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer, one of the leading causes of cancer-related deaths globally, is notorious for its poor prognosis and limited response to conventional therapies. Despite advancements in chemotherapy, targeted therapies, and immunotherapy, the efficacy of these treatments is often undermined by the development of resistance, particularly multidrug resistance (MDR). MDR in lung cancer is primarily driven by various mechanisms, including the overexpression of ATP-binding cassette (ABC) transporters like P-glycoprotein (ABCB1), which actively pump chemotherapeutic drugs out of cancer cells, reducing their intracellular concentration and effectiveness. Additionally, genetic mutations, enhanced DNA repair mechanisms, and alterations in drug targets contribute to this phenomenon. The complexity of MDR not only complicates treatment regimens but also contributes to the high mortality rate associated with lung cancer. Understanding the underlying mechanisms of MDR and developing strategies to overcome this resistance are critical for improving patient outcomes. The objective of this review is to present a comprehensive summary of the current knowledge on conventional and emerging mechanisms of drug resistance, with a particular focus on the involvement of exosomes and exosome-mediated factors that mediate drug resistance in lung cancer. Exosomes, tiny vesicles secreted by cells, play a critical role in drug resistance, especially in lung cancer. They carry genetic material and proteins that can alter the behavior of recipient cells, promoting resistance. In lung cancer, exosomes transfer miRNAs and other molecules that enhance survival pathways and inhibit cell death, contributing to chemoresistance. Recent research highlights the potential of targeting exosomal pathways to develop new therapeutic strategies.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 3","pages":"358-374"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosome-Mediated Mechanisms of Drug Resistance in Lung Cancer: Molecular Mechanisms and Therapeutic Strategies.\",\"authors\":\"Vita Havryliuk, Karolina Wojtowicz, Maciej Gagat, Agnieszka Żuryń\",\"doi\":\"10.33594/000000779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer, one of the leading causes of cancer-related deaths globally, is notorious for its poor prognosis and limited response to conventional therapies. Despite advancements in chemotherapy, targeted therapies, and immunotherapy, the efficacy of these treatments is often undermined by the development of resistance, particularly multidrug resistance (MDR). MDR in lung cancer is primarily driven by various mechanisms, including the overexpression of ATP-binding cassette (ABC) transporters like P-glycoprotein (ABCB1), which actively pump chemotherapeutic drugs out of cancer cells, reducing their intracellular concentration and effectiveness. Additionally, genetic mutations, enhanced DNA repair mechanisms, and alterations in drug targets contribute to this phenomenon. The complexity of MDR not only complicates treatment regimens but also contributes to the high mortality rate associated with lung cancer. Understanding the underlying mechanisms of MDR and developing strategies to overcome this resistance are critical for improving patient outcomes. The objective of this review is to present a comprehensive summary of the current knowledge on conventional and emerging mechanisms of drug resistance, with a particular focus on the involvement of exosomes and exosome-mediated factors that mediate drug resistance in lung cancer. Exosomes, tiny vesicles secreted by cells, play a critical role in drug resistance, especially in lung cancer. They carry genetic material and proteins that can alter the behavior of recipient cells, promoting resistance. In lung cancer, exosomes transfer miRNAs and other molecules that enhance survival pathways and inhibit cell death, contributing to chemoresistance. Recent research highlights the potential of targeting exosomal pathways to develop new therapeutic strategies.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"59 3\",\"pages\":\"358-374\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是全球癌症相关死亡的主要原因之一,因其预后差和对传统疗法的反应有限而臭名昭著。尽管化疗、靶向治疗和免疫治疗取得了进展,但这些治疗的疗效往往因耐药性的发展而受到损害,特别是多药耐药性(MDR)。肺癌的MDR主要由多种机制驱动,包括atp结合盒(ABC)转运体如p -糖蛋白(ABCB1)的过度表达,该转运体主动将化疗药物泵出癌细胞,降低其细胞内浓度和有效性。此外,基因突变、DNA修复机制增强以及药物靶点的改变也导致了这一现象。耐多药的复杂性不仅使治疗方案复杂化,而且导致与肺癌相关的高死亡率。了解耐多药的潜在机制并制定克服这种耐药性的策略对于改善患者预后至关重要。这篇综述的目的是全面总结当前关于传统和新兴耐药机制的知识,特别关注外泌体和外泌体介导的因子在肺癌中介导耐药的作用。外泌体是由细胞分泌的微小囊泡,在耐药性中起着关键作用,特别是在肺癌中。它们携带的遗传物质和蛋白质可以改变受体细胞的行为,促进抵抗。在肺癌中,外泌体转移mirna和其他增强生存途径并抑制细胞死亡的分子,有助于化疗耐药。最近的研究强调了靶向外泌体途径开发新的治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exosome-Mediated Mechanisms of Drug Resistance in Lung Cancer: Molecular Mechanisms and Therapeutic Strategies.

Lung cancer, one of the leading causes of cancer-related deaths globally, is notorious for its poor prognosis and limited response to conventional therapies. Despite advancements in chemotherapy, targeted therapies, and immunotherapy, the efficacy of these treatments is often undermined by the development of resistance, particularly multidrug resistance (MDR). MDR in lung cancer is primarily driven by various mechanisms, including the overexpression of ATP-binding cassette (ABC) transporters like P-glycoprotein (ABCB1), which actively pump chemotherapeutic drugs out of cancer cells, reducing their intracellular concentration and effectiveness. Additionally, genetic mutations, enhanced DNA repair mechanisms, and alterations in drug targets contribute to this phenomenon. The complexity of MDR not only complicates treatment regimens but also contributes to the high mortality rate associated with lung cancer. Understanding the underlying mechanisms of MDR and developing strategies to overcome this resistance are critical for improving patient outcomes. The objective of this review is to present a comprehensive summary of the current knowledge on conventional and emerging mechanisms of drug resistance, with a particular focus on the involvement of exosomes and exosome-mediated factors that mediate drug resistance in lung cancer. Exosomes, tiny vesicles secreted by cells, play a critical role in drug resistance, especially in lung cancer. They carry genetic material and proteins that can alter the behavior of recipient cells, promoting resistance. In lung cancer, exosomes transfer miRNAs and other molecules that enhance survival pathways and inhibit cell death, contributing to chemoresistance. Recent research highlights the potential of targeting exosomal pathways to develop new therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信