{"title":"基于方位测量的无人机目标定位和传感器偏差估计的仿生可观测性增强方法。","authors":"Qianshuai Wang, Zeyuan Li, Jicheng Peng, Kelin Lu","doi":"10.3390/biomimetics10050336","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the problem of observability analysis and enhancement for UAV target localization and sensor bias estimation with bearing-only measurement. Inspired by the compound eye vision, a bio-inspired observability analysis method is proposed for stochastic systems. Furthermore, a performance metric that can be utilized in UAV trajectory optimization for observability enhancement of the target localization system is formulated based on maximum mean discrepancy. The performance metric and the distance of the UAV relative to the target are utilized as objective functions for trajectory optimization. To determine the decision variables (the UAV's velocity and turn rate) for UAV maneuver decision making, a multi-objective optimization framework is constructed, and is subsequently solved via the nonlinear constrained multi-objective whale optimization algorithm. Finally, the analytical results are validated through numerical simulations and comparative analyses. The proposed method demonstrates superior convergence in both target localization and sensor bias estimation. The nonlinear constrained multi-objective whale optimization algorithm achieves minimal values for both generational distance and inverted generational distance, demonstrating superior convergence and diversity characteristics.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bio-Inspired Observability Enhancement Method for UAV Target Localization and Sensor Bias Estimation with Bearing-Only Measurement.\",\"authors\":\"Qianshuai Wang, Zeyuan Li, Jicheng Peng, Kelin Lu\",\"doi\":\"10.3390/biomimetics10050336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper addresses the problem of observability analysis and enhancement for UAV target localization and sensor bias estimation with bearing-only measurement. Inspired by the compound eye vision, a bio-inspired observability analysis method is proposed for stochastic systems. Furthermore, a performance metric that can be utilized in UAV trajectory optimization for observability enhancement of the target localization system is formulated based on maximum mean discrepancy. The performance metric and the distance of the UAV relative to the target are utilized as objective functions for trajectory optimization. To determine the decision variables (the UAV's velocity and turn rate) for UAV maneuver decision making, a multi-objective optimization framework is constructed, and is subsequently solved via the nonlinear constrained multi-objective whale optimization algorithm. Finally, the analytical results are validated through numerical simulations and comparative analyses. The proposed method demonstrates superior convergence in both target localization and sensor bias estimation. The nonlinear constrained multi-objective whale optimization algorithm achieves minimal values for both generational distance and inverted generational distance, demonstrating superior convergence and diversity characteristics.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10050336\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050336","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bio-Inspired Observability Enhancement Method for UAV Target Localization and Sensor Bias Estimation with Bearing-Only Measurement.
This paper addresses the problem of observability analysis and enhancement for UAV target localization and sensor bias estimation with bearing-only measurement. Inspired by the compound eye vision, a bio-inspired observability analysis method is proposed for stochastic systems. Furthermore, a performance metric that can be utilized in UAV trajectory optimization for observability enhancement of the target localization system is formulated based on maximum mean discrepancy. The performance metric and the distance of the UAV relative to the target are utilized as objective functions for trajectory optimization. To determine the decision variables (the UAV's velocity and turn rate) for UAV maneuver decision making, a multi-objective optimization framework is constructed, and is subsequently solved via the nonlinear constrained multi-objective whale optimization algorithm. Finally, the analytical results are validated through numerical simulations and comparative analyses. The proposed method demonstrates superior convergence in both target localization and sensor bias estimation. The nonlinear constrained multi-objective whale optimization algorithm achieves minimal values for both generational distance and inverted generational distance, demonstrating superior convergence and diversity characteristics.