Lin Li, Zehan Chen, Rong Hong, Yanping Qu, Xinqin Gao, Xupeng Wang
{"title":"下肢蹲助可穿戴设备的研究现状及发展趋势。","authors":"Lin Li, Zehan Chen, Rong Hong, Yanping Qu, Xinqin Gao, Xupeng Wang","doi":"10.3390/biomimetics10050258","DOIUrl":null,"url":null,"abstract":"<p><p>The accelerating population aging and increasing demand for higher work efficiency have made the research and the application of lower-limb assistive exoskeletons a primary focus in recent years. This paper reviews the research progress of lower-limb squat assistive wearable devices, with a focus on classification methods, research outcomes, and products from both domestic and international markets. It also analyzes the key technologies involved in their development, such as mechanical mechanisms, control strategies, motion sensing, and effectiveness validation. From an industrial design perspective, the paper also explores the future prospects of lower-limb squat assistive wearable devices in four key areas: multi-signal sensing, intelligent control, human-machine collaboration, and experimental validation. Finally, the paper discusses future development trends in this field.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109048/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research Status and Development Trend of Lower-Limb Squat-Assistant Wearable Devices.\",\"authors\":\"Lin Li, Zehan Chen, Rong Hong, Yanping Qu, Xinqin Gao, Xupeng Wang\",\"doi\":\"10.3390/biomimetics10050258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accelerating population aging and increasing demand for higher work efficiency have made the research and the application of lower-limb assistive exoskeletons a primary focus in recent years. This paper reviews the research progress of lower-limb squat assistive wearable devices, with a focus on classification methods, research outcomes, and products from both domestic and international markets. It also analyzes the key technologies involved in their development, such as mechanical mechanisms, control strategies, motion sensing, and effectiveness validation. From an industrial design perspective, the paper also explores the future prospects of lower-limb squat assistive wearable devices in four key areas: multi-signal sensing, intelligent control, human-machine collaboration, and experimental validation. Finally, the paper discusses future development trends in this field.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10050258\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050258","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Research Status and Development Trend of Lower-Limb Squat-Assistant Wearable Devices.
The accelerating population aging and increasing demand for higher work efficiency have made the research and the application of lower-limb assistive exoskeletons a primary focus in recent years. This paper reviews the research progress of lower-limb squat assistive wearable devices, with a focus on classification methods, research outcomes, and products from both domestic and international markets. It also analyzes the key technologies involved in their development, such as mechanical mechanisms, control strategies, motion sensing, and effectiveness validation. From an industrial design perspective, the paper also explores the future prospects of lower-limb squat assistive wearable devices in four key areas: multi-signal sensing, intelligent control, human-machine collaboration, and experimental validation. Finally, the paper discusses future development trends in this field.