基于改进黑翼风筝算法的多阈值遥感图像分割。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yi Zhang, Xinyu Liu, Wei Sun, Tianshu You, Xin Qi
{"title":"基于改进黑翼风筝算法的多阈值遥感图像分割。","authors":"Yi Zhang, Xinyu Liu, Wei Sun, Tianshu You, Xin Qi","doi":"10.3390/biomimetics10050331","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an adaptive multi-threshold image segmentation method named IBKA-OTSU to address the limitations of existing deep learning-based image segmentation methods, particularly their heavy reliance on large-scale annotated datasets and high computational complexity. The proposed algorithm significantly enhances the capability of complex remote sensing scenarios by systematic improvements to core algorithm components, including population initialization strategy, attack behavior patterns, migration mechanisms, and opposition-based learning strategy. The improved intelligent optimization algorithm is innovatively integrated with the OTSU threshold method to establish a multi-threshold segmentation model specifically designed for remote sensing imagery. Experimental validation using representative samples from the ISPRS Potsdam benchmark dataset demonstrates that our IBKA-optimized OTSU multi-threshold segmentation method outperforms traditional IBKA-optimized pulse coupled neural network (PCNN) approaches in remote sensing image analysis. Quantitative evaluations reveal substantial improvements in the dice coefficient across six randomly selected remote sensing images, achieving performance enhancements of 7.76%, 11.99%, 30.75%, 22.91%, 44.37%, and 18.55%, respectively. This research provides an effective technical solution for intelligently interpreting remote sensing imagery in resource-constrained environments, demonstrating significant theoretical value and practical application potential in engineering implementations.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109558/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Threshold Remote Sensing Image Segmentation Based on Improved Black-Winged Kite Algorithm.\",\"authors\":\"Yi Zhang, Xinyu Liu, Wei Sun, Tianshu You, Xin Qi\",\"doi\":\"10.3390/biomimetics10050331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes an adaptive multi-threshold image segmentation method named IBKA-OTSU to address the limitations of existing deep learning-based image segmentation methods, particularly their heavy reliance on large-scale annotated datasets and high computational complexity. The proposed algorithm significantly enhances the capability of complex remote sensing scenarios by systematic improvements to core algorithm components, including population initialization strategy, attack behavior patterns, migration mechanisms, and opposition-based learning strategy. The improved intelligent optimization algorithm is innovatively integrated with the OTSU threshold method to establish a multi-threshold segmentation model specifically designed for remote sensing imagery. Experimental validation using representative samples from the ISPRS Potsdam benchmark dataset demonstrates that our IBKA-optimized OTSU multi-threshold segmentation method outperforms traditional IBKA-optimized pulse coupled neural network (PCNN) approaches in remote sensing image analysis. Quantitative evaluations reveal substantial improvements in the dice coefficient across six randomly selected remote sensing images, achieving performance enhancements of 7.76%, 11.99%, 30.75%, 22.91%, 44.37%, and 18.55%, respectively. This research provides an effective technical solution for intelligently interpreting remote sensing imagery in resource-constrained environments, demonstrating significant theoretical value and practical application potential in engineering implementations.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109558/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10050331\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种自适应多阈值图像分割方法IBKA-OTSU,以解决现有基于深度学习的图像分割方法严重依赖大规模标注数据集和计算复杂度高的局限性。该算法通过对种群初始化策略、攻击行为模式、迁移机制和基于对立的学习策略等核心算法组件进行系统改进,显著增强了复杂遥感场景的能力。将改进后的智能优化算法创新地与OTSU阈值法相结合,建立了专门针对遥感影像的多阈值分割模型。利用ISPRS波茨坦基准数据集的代表性样本进行的实验验证表明,ibka优化的OTSU多阈值分割方法在遥感图像分析中优于传统的ibka优化脉冲耦合神经网络(PCNN)方法。定量评估表明,随机选择的6张遥感图像的骰子系数得到了显著提高,性能分别提高了7.76%、11.99%、30.75%、22.91%、44.37%和18.55%。本研究为资源受限环境下遥感影像的智能解译提供了有效的技术解决方案,在工程实施中具有重要的理论价值和实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Threshold Remote Sensing Image Segmentation Based on Improved Black-Winged Kite Algorithm.

This paper proposes an adaptive multi-threshold image segmentation method named IBKA-OTSU to address the limitations of existing deep learning-based image segmentation methods, particularly their heavy reliance on large-scale annotated datasets and high computational complexity. The proposed algorithm significantly enhances the capability of complex remote sensing scenarios by systematic improvements to core algorithm components, including population initialization strategy, attack behavior patterns, migration mechanisms, and opposition-based learning strategy. The improved intelligent optimization algorithm is innovatively integrated with the OTSU threshold method to establish a multi-threshold segmentation model specifically designed for remote sensing imagery. Experimental validation using representative samples from the ISPRS Potsdam benchmark dataset demonstrates that our IBKA-optimized OTSU multi-threshold segmentation method outperforms traditional IBKA-optimized pulse coupled neural network (PCNN) approaches in remote sensing image analysis. Quantitative evaluations reveal substantial improvements in the dice coefficient across six randomly selected remote sensing images, achieving performance enhancements of 7.76%, 11.99%, 30.75%, 22.91%, 44.37%, and 18.55%, respectively. This research provides an effective technical solution for intelligently interpreting remote sensing imagery in resource-constrained environments, demonstrating significant theoretical value and practical application potential in engineering implementations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信