{"title":"亚马逊河流域陆生物种动态河流网络的生物地理和基因组特征。","authors":"Lukas J Musher","doi":"10.1111/brv.70042","DOIUrl":null,"url":null,"abstract":"<p><p>Amazonia contains Earth's largest freshwater basin, largest contiguous stretch of tropical forest, and most species-rich terrestrial biota on Earth. Rivers are key geographic features that drive diversification of the Amazonian biota, but they are also dynamic, which challenges their role as long-term barriers to dispersal and gene flow. The impacts of such river dynamics on organismal evolution have only recently been explored in detail. Here I examine biodiversity patterns and processes in Amazonia to elucidate how taxa diversify in the context of river network dynamics. I borrow the River Capture Hypothesis from ichthyology, and draw on evidence from speciation genomics, hybrid zones, and community assembly to demonstrate the effects of river network evolution on biodiversification. The idea is simple: populations of organisms whose dispersal is restricted by rivers become semi-isolated by rivers. Drift and selection against introgression drive divergence, but as rivers move, previously isolated populations come into secondary contact, facilitating lineage fusions or the migration of hybrid zones to other rivers. The basin's unique macroecological patterns and rich biota thus may have resulted from repeated divergences, lineage fusions, and range expansions around a network of non-stationary extrinsic barriers with variable results depending on the degree of intrinsic reproductive isolation that accumulates during this process. The evolutionary consequences of dynamic landscapes extend beyond Amazonia as \"fission-fusion-fission\" cycles modulate the diversification and spatial patterning of life on Earth in general.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The biogeographic and genomic signatures of dynamic river networks for terrestrial species in Amazonia.\",\"authors\":\"Lukas J Musher\",\"doi\":\"10.1111/brv.70042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amazonia contains Earth's largest freshwater basin, largest contiguous stretch of tropical forest, and most species-rich terrestrial biota on Earth. Rivers are key geographic features that drive diversification of the Amazonian biota, but they are also dynamic, which challenges their role as long-term barriers to dispersal and gene flow. The impacts of such river dynamics on organismal evolution have only recently been explored in detail. Here I examine biodiversity patterns and processes in Amazonia to elucidate how taxa diversify in the context of river network dynamics. I borrow the River Capture Hypothesis from ichthyology, and draw on evidence from speciation genomics, hybrid zones, and community assembly to demonstrate the effects of river network evolution on biodiversification. The idea is simple: populations of organisms whose dispersal is restricted by rivers become semi-isolated by rivers. Drift and selection against introgression drive divergence, but as rivers move, previously isolated populations come into secondary contact, facilitating lineage fusions or the migration of hybrid zones to other rivers. The basin's unique macroecological patterns and rich biota thus may have resulted from repeated divergences, lineage fusions, and range expansions around a network of non-stationary extrinsic barriers with variable results depending on the degree of intrinsic reproductive isolation that accumulates during this process. The evolutionary consequences of dynamic landscapes extend beyond Amazonia as \\\"fission-fusion-fission\\\" cycles modulate the diversification and spatial patterning of life on Earth in general.</p>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/brv.70042\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.70042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The biogeographic and genomic signatures of dynamic river networks for terrestrial species in Amazonia.
Amazonia contains Earth's largest freshwater basin, largest contiguous stretch of tropical forest, and most species-rich terrestrial biota on Earth. Rivers are key geographic features that drive diversification of the Amazonian biota, but they are also dynamic, which challenges their role as long-term barriers to dispersal and gene flow. The impacts of such river dynamics on organismal evolution have only recently been explored in detail. Here I examine biodiversity patterns and processes in Amazonia to elucidate how taxa diversify in the context of river network dynamics. I borrow the River Capture Hypothesis from ichthyology, and draw on evidence from speciation genomics, hybrid zones, and community assembly to demonstrate the effects of river network evolution on biodiversification. The idea is simple: populations of organisms whose dispersal is restricted by rivers become semi-isolated by rivers. Drift and selection against introgression drive divergence, but as rivers move, previously isolated populations come into secondary contact, facilitating lineage fusions or the migration of hybrid zones to other rivers. The basin's unique macroecological patterns and rich biota thus may have resulted from repeated divergences, lineage fusions, and range expansions around a network of non-stationary extrinsic barriers with variable results depending on the degree of intrinsic reproductive isolation that accumulates during this process. The evolutionary consequences of dynamic landscapes extend beyond Amazonia as "fission-fusion-fission" cycles modulate the diversification and spatial patterning of life on Earth in general.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.