{"title":"后缘波纹增强了三维机翼在滑翔飞行中的气动性能。","authors":"Kaipeng Li, Na Xu, Licheng Zhong, Xiaolei Mou","doi":"10.3390/biomimetics10050329","DOIUrl":null,"url":null,"abstract":"<p><p>Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corrugation at the Trailing Edge Enhances the Aerodynamic Performance of a Three-Dimensional Wing During Gliding Flight.\",\"authors\":\"Kaipeng Li, Na Xu, Licheng Zhong, Xiaolei Mou\",\"doi\":\"10.3390/biomimetics10050329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10050329\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050329","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrugation at the Trailing Edge Enhances the Aerodynamic Performance of a Three-Dimensional Wing During Gliding Flight.
Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.