后缘波纹增强了三维机翼在滑翔飞行中的气动性能。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Kaipeng Li, Na Xu, Licheng Zhong, Xiaolei Mou
{"title":"后缘波纹增强了三维机翼在滑翔飞行中的气动性能。","authors":"Kaipeng Li, Na Xu, Licheng Zhong, Xiaolei Mou","doi":"10.3390/biomimetics10050329","DOIUrl":null,"url":null,"abstract":"<p><p>Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corrugation at the Trailing Edge Enhances the Aerodynamic Performance of a Three-Dimensional Wing During Gliding Flight.\",\"authors\":\"Kaipeng Li, Na Xu, Licheng Zhong, Xiaolei Mou\",\"doi\":\"10.3390/biomimetics10050329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10050329\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10050329","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蜻蜓表现出非凡的飞行能力,它们的翅膀具有波纹结构,与传统的翼型不同。本文研究了雷诺数为1350,迎角为0°~ 20°时,三个波纹参数(1)弦向波纹位置,(2)向尾缘波纹振幅的线性变化,(3)尾缘波纹数对滑翔性能的气动影响。结果表明,当波纹结构位置靠近尾缘时,可以在上表面中前向区域产生局域涡,从而提高气动性能。进一步的研究表明,向尾缘方向波纹幅值的线性增加显著延缓了前缘涡的脱落,使前缘涡更加连贯,并减少了下表面波纹槽内的涡数。因此,升力系数最大,提高了28.99%。此外,减少尾缘波纹的数量会使上表面的局部涡靠近尾缘,并合并成更大、更连续的lev。下表面凹槽涡的数量也有所减少,升力系数最大提高了20.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrugation at the Trailing Edge Enhances the Aerodynamic Performance of a Three-Dimensional Wing During Gliding Flight.

Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信