棉花根系水工结构协同优化提高抗旱性。

IF 6 1区 生物学 Q1 PLANT SCIENCES
Shuo Wang, Lingxiao Zhu, Peng Zhang, Xinyue Wang, Hongchun Sun, Ke Zhang, Yongjiang Zhang, Guiyan Wang, Ningxin Zhu, Zhiying Bai, Hezhong Dong, Cundong Li, Liantao Liu
{"title":"棉花根系水工结构协同优化提高抗旱性。","authors":"Shuo Wang, Lingxiao Zhu, Peng Zhang, Xinyue Wang, Hongchun Sun, Ke Zhang, Yongjiang Zhang, Guiyan Wang, Ningxin Zhu, Zhiying Bai, Hezhong Dong, Cundong Li, Liantao Liu","doi":"10.1111/pce.15640","DOIUrl":null,"url":null,"abstract":"<p><p>Optimising the root hydraulic architecture, which is defined by the integration of morphological and hydraulic traits, plays a crucial role in enhancing the drought tolerance of crops. However, the mechanisms by which root hydraulic architecture coordinates structural and functional adaptations under drought remain unclear. In this study, we used paper-based cultured 13 cotton cultivars under no-stressed and drought-stressed conditions, and identified a drought-tolerant (Guoxin 02) and a drought-sensitive (Ji 228) cultivar. The drought-tolerant cultivar exhibited enhanced root hydraulic conductance (Lpr) through increased lateral root length and number, reduced lateral root tip angle, and lower root width/depth ratio. Anatomically, drought tolerance was associated with narrower xylem vessels to limit axial conductance (K<sub>x</sub>) and reduced cortex cell layers to increase radial hydraulic conductance (K<sub>ox</sub>), thereby balancing hydraulic efficiency and embolism resistance. Despite lower K<sub>x</sub>, the high root hydraulic conductance (K<sub>root</sub>) in the drought-tolerant cultivar was maintained by lateral root proliferation, demonstrating a synergistic interplay between morphology and hydraulics. These findings highlight the plasticity of root hydraulic architecture as a key target for breeding drought-resilient cotton.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Optimisation of Root Hydraulic Architecture Enhances Drought Tolerance in Cotton.\",\"authors\":\"Shuo Wang, Lingxiao Zhu, Peng Zhang, Xinyue Wang, Hongchun Sun, Ke Zhang, Yongjiang Zhang, Guiyan Wang, Ningxin Zhu, Zhiying Bai, Hezhong Dong, Cundong Li, Liantao Liu\",\"doi\":\"10.1111/pce.15640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optimising the root hydraulic architecture, which is defined by the integration of morphological and hydraulic traits, plays a crucial role in enhancing the drought tolerance of crops. However, the mechanisms by which root hydraulic architecture coordinates structural and functional adaptations under drought remain unclear. In this study, we used paper-based cultured 13 cotton cultivars under no-stressed and drought-stressed conditions, and identified a drought-tolerant (Guoxin 02) and a drought-sensitive (Ji 228) cultivar. The drought-tolerant cultivar exhibited enhanced root hydraulic conductance (Lpr) through increased lateral root length and number, reduced lateral root tip angle, and lower root width/depth ratio. Anatomically, drought tolerance was associated with narrower xylem vessels to limit axial conductance (K<sub>x</sub>) and reduced cortex cell layers to increase radial hydraulic conductance (K<sub>ox</sub>), thereby balancing hydraulic efficiency and embolism resistance. Despite lower K<sub>x</sub>, the high root hydraulic conductance (K<sub>root</sub>) in the drought-tolerant cultivar was maintained by lateral root proliferation, demonstrating a synergistic interplay between morphology and hydraulics. These findings highlight the plasticity of root hydraulic architecture as a key target for breeding drought-resilient cotton.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15640\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15640","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

根系水力构型的优化是根系形态和水力性状的综合,对提高作物的耐旱性具有重要作用。然而,干旱条件下根系水力结构协调结构和功能适应的机制尚不清楚。本研究以13个棉花品种为材料,在无胁迫和干旱胁迫条件下进行纸培,鉴定出耐旱品种国新02和干旱敏感品种冀228。耐旱品种通过增加侧根长度和数量、减小侧根尖角和降低根宽/根深比,提高了根系水导性。解剖学上,耐旱性与木质部血管变窄以限制轴向传导(Kx)和皮质细胞层减少以增加径向水力传导(Kox)相关,从而平衡水力效率和抗栓塞性。尽管Kx较低,但耐旱品种的高根系水力导度(Kroot)是通过侧根增殖维持的,这表明形态和水力之间存在协同作用。这些发现强调了根系水力结构的可塑性是培育抗旱棉花的关键目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Optimisation of Root Hydraulic Architecture Enhances Drought Tolerance in Cotton.

Optimising the root hydraulic architecture, which is defined by the integration of morphological and hydraulic traits, plays a crucial role in enhancing the drought tolerance of crops. However, the mechanisms by which root hydraulic architecture coordinates structural and functional adaptations under drought remain unclear. In this study, we used paper-based cultured 13 cotton cultivars under no-stressed and drought-stressed conditions, and identified a drought-tolerant (Guoxin 02) and a drought-sensitive (Ji 228) cultivar. The drought-tolerant cultivar exhibited enhanced root hydraulic conductance (Lpr) through increased lateral root length and number, reduced lateral root tip angle, and lower root width/depth ratio. Anatomically, drought tolerance was associated with narrower xylem vessels to limit axial conductance (Kx) and reduced cortex cell layers to increase radial hydraulic conductance (Kox), thereby balancing hydraulic efficiency and embolism resistance. Despite lower Kx, the high root hydraulic conductance (Kroot) in the drought-tolerant cultivar was maintained by lateral root proliferation, demonstrating a synergistic interplay between morphology and hydraulics. These findings highlight the plasticity of root hydraulic architecture as a key target for breeding drought-resilient cotton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信