PISA打印可灌注毛细血管。

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Aaron Priester, Jimmy Yeng, Yuwei Zhang, David Christofferson, Risheng Wang, Anthony J Convertine
{"title":"PISA打印可灌注毛细血管。","authors":"Aaron Priester, Jimmy Yeng, Yuwei Zhang, David Christofferson, Risheng Wang, Anthony J Convertine","doi":"10.1039/d5bm00547g","DOIUrl":null,"url":null,"abstract":"<p><p>Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PISA printing perfusable microcapillaries.\",\"authors\":\"Aaron Priester, Jimmy Yeng, Yuwei Zhang, David Christofferson, Risheng Wang, Anthony J Convertine\",\"doi\":\"10.1039/d5bm00547g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm00547g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00547g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

聚合诱导自组装(PISA)印刷将可逆加成-碎片链转移(RAFT)聚合与数字光投影(DLP)光刻技术结合在一起,创造出不需要永久共价交联的高分辨率三维结构。在这里,我们介绍了一种简化的,一锅,无纯化的多链转移剂(multi-CTA)支架的合成方法,该支架在打印过程中自发形成坚固的物理网络,通过颗粒间桥和结来稳定。通过调整溶剂-树脂化学和聚合物组成,我们实现了对纳米级形貌和选择分布行为的精确控制。通过成功制造可灌注的微血管网络和开放通道聚二甲基硅氧烷(PDMS)微流体装置,这种方法得到了证明,其中牺牲支架溶解干净,产生稳定的微通道。总的来说,这些发现增强了PISA打印的可访问性、灵活性和功能性,为微加工、快速原型和先进的组织工程应用提供了一个高效、适应性强的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PISA printing perfusable microcapillaries.

Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信