Aaron Priester, Jimmy Yeng, Yuwei Zhang, David Christofferson, Risheng Wang, Anthony J Convertine
{"title":"PISA打印可灌注毛细血管。","authors":"Aaron Priester, Jimmy Yeng, Yuwei Zhang, David Christofferson, Risheng Wang, Anthony J Convertine","doi":"10.1039/d5bm00547g","DOIUrl":null,"url":null,"abstract":"<p><p>Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PISA printing perfusable microcapillaries.\",\"authors\":\"Aaron Priester, Jimmy Yeng, Yuwei Zhang, David Christofferson, Risheng Wang, Anthony J Convertine\",\"doi\":\"10.1039/d5bm00547g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm00547g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00547g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Polymerization-induced self-assembly (PISA) printing combines reversible addition-fragmentation chain transfer (RAFT) polymerization with digital light projection (DLP) photolithography to create high-resolution three-dimensional structures without permanent covalent crosslinks. Here, we intoduce a simplified, one-pot, purification-free synthesis for multi-chain transfer agent (multi-CTA) scaffolds that spontaneously form robust physical networks durnig printing, stabilized by interparticle bridges and knots. By tuning solvent-resin chemistry and polymer composition, we achieved precise control over nanoscale morphologies and selective distribution behaviors. This approach was demonstrate through successful fabrication of perfusable microvascular networks and open-channel polydimethylsiloxane (PDMS) microfluidic devices, where sacrificial scaffolds dissolved cleanly to yield stable microchannels. Collectively, these findings enhance the accessibliity, flexibility, and functionality of PISA printing, offering an efficient and adaptable platform for microfabrication, rapid prototyping, and advance d tissue engineering applications.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.