米尔斯的常数是非理性的

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-05-28 DOI:10.1112/mtk.70027
Kota Saito
{"title":"米尔斯的常数是非理性的","authors":"Kota Saito","doi":"10.1112/mtk.70027","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> denote the integer part of <span></span><math></math>. In 1947, Mills constructed a real number <span></span><math></math> such that <span></span><math></math> is always a prime number for every positive integer <span></span><math></math>. We define Mills' constant as the smallest real number <span></span><math></math> satisfying this property. Determining whether this number is irrational has been a long-standing problem. In this paper, we show that Mills' constant is irrational. Furthermore, we obtain partial results on the transcendency of this number.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mills' constant is irrational\",\"authors\":\"Kota Saito\",\"doi\":\"10.1112/mtk.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math></math> denote the integer part of <span></span><math></math>. In 1947, Mills constructed a real number <span></span><math></math> such that <span></span><math></math> is always a prime number for every positive integer <span></span><math></math>. We define Mills' constant as the smallest real number <span></span><math></math> satisfying this property. Determining whether this number is irrational has been a long-standing problem. In this paper, we show that Mills' constant is irrational. Furthermore, we obtain partial results on the transcendency of this number.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70027\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

表示的整数部分。1947年,米尔斯构造了一个实数,对于每一个正整数,它总是一个素数。我们把米尔斯常数定义为满足这个性质的最小实数。确定这个数字是否不合理一直是一个长期存在的问题。在本文中,我们证明了米尔斯常数是非理性的。进一步,我们得到了这个数的超越性的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mills' constant is irrational

Let denote the integer part of . In 1947, Mills constructed a real number such that is always a prime number for every positive integer . We define Mills' constant as the smallest real number satisfying this property. Determining whether this number is irrational has been a long-standing problem. In this paper, we show that Mills' constant is irrational. Furthermore, we obtain partial results on the transcendency of this number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信