{"title":"锂离子电池负极用T相单层MXenes Mo2N和Mo2NT2 (T = F, O)的第一性原理研究","authors":"Wenlong Xi and Patrick H.-L. Sit","doi":"10.1039/D5RA03426D","DOIUrl":null,"url":null,"abstract":"<p >The exploration of high-performance anode materials plays a pivotal role in advancing the development of lithium-ion batteries (LIBs) for various applications. In this study, we investigate the potential of the MXene materials, T-phase Mo<small><sub>2</sub></small>N and Mo<small><sub>2</sub></small>NT<small><sub>2</sub></small> (T = F, O) as anode materials for LIBs through the application of first-principles calculations. The results show that the diffusion rate of Li atoms on Mo<small><sub>2</sub></small>N is faster than that on Mo<small><sub>2</sub></small>NF<small><sub>2</sub></small> and Mo<small><sub>2</sub></small>NO<small><sub>2</sub></small>, and the adsorption of a high concentration of Li atoms results in destruction of the surface structure of Mo<small><sub>2</sub></small>NF<small><sub>2</sub></small>. The calculated theoretical capacities for Mo<small><sub>2</sub></small>N and Mo<small><sub>2</sub></small>NO<small><sub>2</sub></small> are determined to be 260.3 mA h g<small><sup>−1</sup></small> and 225.3 mA h g<small><sup>−1</sup></small>, respectively, and the mean open-circuit voltages are computed to be 0.97 V and 0.73 V, respectively. Our results show that Mo<small><sub>2</sub></small>N and Mo<small><sub>2</sub></small>NO<small><sub>2</sub></small> exhibit significant promise for utilization as anode materials in LIBs.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 22","pages":" 17795-17802"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03426d?page=search","citationCount":"0","resultStr":"{\"title\":\"First-principles study of the T-phase monolayer MXenes Mo2N and Mo2NT2 (T = F, O) for anode application in lithium-ion batteries†\",\"authors\":\"Wenlong Xi and Patrick H.-L. Sit\",\"doi\":\"10.1039/D5RA03426D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The exploration of high-performance anode materials plays a pivotal role in advancing the development of lithium-ion batteries (LIBs) for various applications. In this study, we investigate the potential of the MXene materials, T-phase Mo<small><sub>2</sub></small>N and Mo<small><sub>2</sub></small>NT<small><sub>2</sub></small> (T = F, O) as anode materials for LIBs through the application of first-principles calculations. The results show that the diffusion rate of Li atoms on Mo<small><sub>2</sub></small>N is faster than that on Mo<small><sub>2</sub></small>NF<small><sub>2</sub></small> and Mo<small><sub>2</sub></small>NO<small><sub>2</sub></small>, and the adsorption of a high concentration of Li atoms results in destruction of the surface structure of Mo<small><sub>2</sub></small>NF<small><sub>2</sub></small>. The calculated theoretical capacities for Mo<small><sub>2</sub></small>N and Mo<small><sub>2</sub></small>NO<small><sub>2</sub></small> are determined to be 260.3 mA h g<small><sup>−1</sup></small> and 225.3 mA h g<small><sup>−1</sup></small>, respectively, and the mean open-circuit voltages are computed to be 0.97 V and 0.73 V, respectively. Our results show that Mo<small><sub>2</sub></small>N and Mo<small><sub>2</sub></small>NO<small><sub>2</sub></small> exhibit significant promise for utilization as anode materials in LIBs.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 22\",\"pages\":\" 17795-17802\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03426d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03426d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03426d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
高性能负极材料的探索对于推进锂离子电池的各种应用发展起着至关重要的作用。在本研究中,我们通过应用第一性原理计算研究了MXene材料,T相Mo2N和Mo2NT2 (T = F, O)作为锂离子电池阳极材料的潜力。结果表明:Li原子在Mo2N上的扩散速度比Mo2NF2和Mo2NO2上的扩散速度快,高浓度Li原子的吸附导致Mo2NF2表面结构的破坏。计算得到Mo2N和Mo2NO2的理论容量分别为260.3 mA h g−1和225.3 mA h g−1,平均开路电压分别为0.97 V和0.73 V。我们的研究结果表明,Mo2N和Mo2NO2在锂离子电池中作为阳极材料具有重要的应用前景。
First-principles study of the T-phase monolayer MXenes Mo2N and Mo2NT2 (T = F, O) for anode application in lithium-ion batteries†
The exploration of high-performance anode materials plays a pivotal role in advancing the development of lithium-ion batteries (LIBs) for various applications. In this study, we investigate the potential of the MXene materials, T-phase Mo2N and Mo2NT2 (T = F, O) as anode materials for LIBs through the application of first-principles calculations. The results show that the diffusion rate of Li atoms on Mo2N is faster than that on Mo2NF2 and Mo2NO2, and the adsorption of a high concentration of Li atoms results in destruction of the surface structure of Mo2NF2. The calculated theoretical capacities for Mo2N and Mo2NO2 are determined to be 260.3 mA h g−1 and 225.3 mA h g−1, respectively, and the mean open-circuit voltages are computed to be 0.97 V and 0.73 V, respectively. Our results show that Mo2N and Mo2NO2 exhibit significant promise for utilization as anode materials in LIBs.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.