各向异性界面相场模型特征宽度分配方法的提出与验证

IF 4.7 2区 工程技术 Q1 MECHANICS
Chengbei He , Yongsheng Liu , Haoran Xu , Jianxin Xia
{"title":"各向异性界面相场模型特征宽度分配方法的提出与验证","authors":"Chengbei He ,&nbsp;Yongsheng Liu ,&nbsp;Haoran Xu ,&nbsp;Jianxin Xia","doi":"10.1016/j.engfracmech.2025.111265","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the complex mechanical behavior of interface debonding in anisotropic materials by proposing a novel phase field model that integrates cohesive zone model with anisotropy theory. The core innovation lies in developing a characteristic width allocation strategy based on interface softening laws. By establishing a functional relationship between characteristic width and interfacial mechanical strength, this model overcomes the limitations of characteristic width selection in conventional phase field methods, enabling precise characterization of interfacial mechanical properties. Experimental validation demonstrates that the phase field simulation results using the proposed characteristic width optimization criteria exhibit excellent agreement with bimaterial plate tensile experiments. In single circular reinforced concrete tensile simulations, the model achieves results consistent with theoretical solutions (<span><math><mrow><msub><mi>α</mi><mrow><mi>kink</mi></mrow></msub><mo>=</mo><mn>68.8829</mn><mo>°</mo></mrow></math></span>) and exceeds the accuracy of the extended finite element method by approximately <span><math><mrow><mn>4.3</mn><mo>%</mo></mrow></math></span>. The numerical predictions of mechanical behavior in anisotropic multiphase materials align with physical expectations. This approach elucidates interface damage evolution mechanisms under varying softening laws and matrix anisotropy characteristics, providing a high-precision computational framework for interfacial failure analysis in anisotropic multiphase materials.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"324 ","pages":"Article 111265"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The characteristic width assignment method for anisotropy-interface phase field model: Proposed and validation\",\"authors\":\"Chengbei He ,&nbsp;Yongsheng Liu ,&nbsp;Haoran Xu ,&nbsp;Jianxin Xia\",\"doi\":\"10.1016/j.engfracmech.2025.111265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the complex mechanical behavior of interface debonding in anisotropic materials by proposing a novel phase field model that integrates cohesive zone model with anisotropy theory. The core innovation lies in developing a characteristic width allocation strategy based on interface softening laws. By establishing a functional relationship between characteristic width and interfacial mechanical strength, this model overcomes the limitations of characteristic width selection in conventional phase field methods, enabling precise characterization of interfacial mechanical properties. Experimental validation demonstrates that the phase field simulation results using the proposed characteristic width optimization criteria exhibit excellent agreement with bimaterial plate tensile experiments. In single circular reinforced concrete tensile simulations, the model achieves results consistent with theoretical solutions (<span><math><mrow><msub><mi>α</mi><mrow><mi>kink</mi></mrow></msub><mo>=</mo><mn>68.8829</mn><mo>°</mo></mrow></math></span>) and exceeds the accuracy of the extended finite element method by approximately <span><math><mrow><mn>4.3</mn><mo>%</mo></mrow></math></span>. The numerical predictions of mechanical behavior in anisotropic multiphase materials align with physical expectations. This approach elucidates interface damage evolution mechanisms under varying softening laws and matrix anisotropy characteristics, providing a high-precision computational framework for interfacial failure analysis in anisotropic multiphase materials.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"324 \",\"pages\":\"Article 111265\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794425004667\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425004667","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合黏聚区模型和各向异性理论的相场模型,解决了各向异性材料界面脱粘的复杂力学行为。其核心创新点在于基于界面软化规律的特征宽度分配策略。该模型通过建立特征宽度与界面力学强度之间的函数关系,克服了传统相场方法中特征宽度选择的局限性,实现了界面力学性能的精确表征。实验验证表明,采用所提出的特征宽度优化准则的相场模拟结果与双材料板拉伸实验结果具有良好的一致性。在单圆钢筋混凝土拉伸模拟中,模型得到了与理论解一致的结果(α扭结=68.8829°),比扩展有限元法的精度高出约4.3%。各向异性多相材料力学行为的数值预测与物理预期一致。该方法阐明了不同软化规律和基体各向异性特征下界面损伤演化机制,为各向异性多相材料界面破坏分析提供了高精度的计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The characteristic width assignment method for anisotropy-interface phase field model: Proposed and validation
This study addresses the complex mechanical behavior of interface debonding in anisotropic materials by proposing a novel phase field model that integrates cohesive zone model with anisotropy theory. The core innovation lies in developing a characteristic width allocation strategy based on interface softening laws. By establishing a functional relationship between characteristic width and interfacial mechanical strength, this model overcomes the limitations of characteristic width selection in conventional phase field methods, enabling precise characterization of interfacial mechanical properties. Experimental validation demonstrates that the phase field simulation results using the proposed characteristic width optimization criteria exhibit excellent agreement with bimaterial plate tensile experiments. In single circular reinforced concrete tensile simulations, the model achieves results consistent with theoretical solutions (αkink=68.8829°) and exceeds the accuracy of the extended finite element method by approximately 4.3%. The numerical predictions of mechanical behavior in anisotropic multiphase materials align with physical expectations. This approach elucidates interface damage evolution mechanisms under varying softening laws and matrix anisotropy characteristics, providing a high-precision computational framework for interfacial failure analysis in anisotropic multiphase materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信