调谐石墨氮化碳:金属、半导体和非金属掺杂对电子和热力学性质影响的计算研究

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Babar Ali , Qurat Ul Ain , Muhammad Azeem , Zijing Lin
{"title":"调谐石墨氮化碳:金属、半导体和非金属掺杂对电子和热力学性质影响的计算研究","authors":"Babar Ali ,&nbsp;Qurat Ul Ain ,&nbsp;Muhammad Azeem ,&nbsp;Zijing Lin","doi":"10.1016/j.jpcs.2025.112878","DOIUrl":null,"url":null,"abstract":"<div><div>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is emerging as a promising semiconductor for optoelectronics, photocatalysis, and energy storage. The electronic and thermodynamic properties of g-C<sub>3</sub>N<sub>4</sub> are investigated in this study via density functional theory (DFT) calculations (B3LYP/Lanl2dz) and the effects of metal, semiconductor, and non-metal doping on these properties assessed. Doping effectively reduces the HOMO–LUMO gap from 2.64 to 1.09 eV, increases the light absorption up to 720 nm, enhances charge transfer, and extends excited state (ES) lifetimes to 127 ns. Electronic structure analysis shows significant changes in charge distribution, and thermodynamic calculations show increased stability. P-gC<sub>3</sub>N<sub>4</sub>, Si-gC<sub>3</sub>N<sub>4</sub>, and Cu-gC<sub>3</sub>N<sub>4</sub> have lower band gaps and strong excitation energies, making them ideal for light-emitting diodes. Meanwhile, P-gC<sub>3</sub>N<sub>4</sub>, Cd-gC<sub>3</sub>N<sub>4</sub>, and Se-gC<sub>3</sub>N<sub>4</sub> optimize light absorption, enhancing solar cell efficiency. Ionization energy is ideal for sensors, while variants doped with Cu-gC<sub>3</sub>N<sub>4</sub>, Cd-gC<sub>3</sub>N<sub>4</sub>, or Se-gC<sub>3</sub>N<sub>4</sub> enhance photodetectors, offering strong visible absorption and efficient charge transport for improved performance. Moreover, g-C<sub>3</sub>N<sub>4</sub> doped with GaN<sub>3</sub>-gC<sub>3</sub>N<sub>4</sub>, Cu-gC<sub>3</sub>N<sub>4</sub>, and W-gC<sub>3</sub>N<sub>4</sub> are all found to possess high thermodynamic stabilities for hydrogen storage. Our findings demonstrate that doping is a powerful strategy to optimize g-C<sub>3</sub>N<sub>4</sub> for advanced technological applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112878"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning graphitic carbon nitride: A computational study of metal, semiconductor, and Non‐Metal doping effects on electronic and thermodynamic properties\",\"authors\":\"Babar Ali ,&nbsp;Qurat Ul Ain ,&nbsp;Muhammad Azeem ,&nbsp;Zijing Lin\",\"doi\":\"10.1016/j.jpcs.2025.112878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is emerging as a promising semiconductor for optoelectronics, photocatalysis, and energy storage. The electronic and thermodynamic properties of g-C<sub>3</sub>N<sub>4</sub> are investigated in this study via density functional theory (DFT) calculations (B3LYP/Lanl2dz) and the effects of metal, semiconductor, and non-metal doping on these properties assessed. Doping effectively reduces the HOMO–LUMO gap from 2.64 to 1.09 eV, increases the light absorption up to 720 nm, enhances charge transfer, and extends excited state (ES) lifetimes to 127 ns. Electronic structure analysis shows significant changes in charge distribution, and thermodynamic calculations show increased stability. P-gC<sub>3</sub>N<sub>4</sub>, Si-gC<sub>3</sub>N<sub>4</sub>, and Cu-gC<sub>3</sub>N<sub>4</sub> have lower band gaps and strong excitation energies, making them ideal for light-emitting diodes. Meanwhile, P-gC<sub>3</sub>N<sub>4</sub>, Cd-gC<sub>3</sub>N<sub>4</sub>, and Se-gC<sub>3</sub>N<sub>4</sub> optimize light absorption, enhancing solar cell efficiency. Ionization energy is ideal for sensors, while variants doped with Cu-gC<sub>3</sub>N<sub>4</sub>, Cd-gC<sub>3</sub>N<sub>4</sub>, or Se-gC<sub>3</sub>N<sub>4</sub> enhance photodetectors, offering strong visible absorption and efficient charge transport for improved performance. Moreover, g-C<sub>3</sub>N<sub>4</sub> doped with GaN<sub>3</sub>-gC<sub>3</sub>N<sub>4</sub>, Cu-gC<sub>3</sub>N<sub>4</sub>, and W-gC<sub>3</sub>N<sub>4</sub> are all found to possess high thermodynamic stabilities for hydrogen storage. Our findings demonstrate that doping is a powerful strategy to optimize g-C<sub>3</sub>N<sub>4</sub> for advanced technological applications.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112878\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003300\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003300","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨化氮化碳(g-C3N4)在光电子学、光催化和储能等领域正成为一种前景广阔的半导体材料。本研究通过密度泛函理论(DFT)计算(B3LYP/Lanl2dz)研究了g-C3N4的电子和热力学性质,并评估了金属、半导体和非金属掺杂对这些性质的影响。掺杂有效地将HOMO-LUMO隙从2.64 eV减小到1.09 eV,使光吸收增加到720 nm,增强电荷转移,并将激发态(ES)寿命延长到127 ns。电子结构分析表明电荷分布发生了显著变化,热力学计算表明稳定性增加。P-gC3N4、Si-gC3N4和Cu-gC3N4具有较低的带隙和较强的激发能,是理想的发光二极管材料。同时,P-gC3N4、Cd-gC3N4和Se-gC3N4优化了光吸收,提高了太阳能电池效率。电离能是传感器的理想选择,而掺杂Cu-gC3N4、Cd-gC3N4或Se-gC3N4的变体增强了光电探测器,提供强大的可见吸收和有效的电荷传输,从而提高了性能。此外,g-C3N4掺杂GaN3-gC3N4、Cu-gC3N4和W-gC3N4均具有较高的储氢热力学稳定性。我们的研究结果表明,掺杂是优化g-C3N4用于先进技术应用的有力策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning graphitic carbon nitride: A computational study of metal, semiconductor, and Non‐Metal doping effects on electronic and thermodynamic properties
Graphitic carbon nitride (g-C3N4) is emerging as a promising semiconductor for optoelectronics, photocatalysis, and energy storage. The electronic and thermodynamic properties of g-C3N4 are investigated in this study via density functional theory (DFT) calculations (B3LYP/Lanl2dz) and the effects of metal, semiconductor, and non-metal doping on these properties assessed. Doping effectively reduces the HOMO–LUMO gap from 2.64 to 1.09 eV, increases the light absorption up to 720 nm, enhances charge transfer, and extends excited state (ES) lifetimes to 127 ns. Electronic structure analysis shows significant changes in charge distribution, and thermodynamic calculations show increased stability. P-gC3N4, Si-gC3N4, and Cu-gC3N4 have lower band gaps and strong excitation energies, making them ideal for light-emitting diodes. Meanwhile, P-gC3N4, Cd-gC3N4, and Se-gC3N4 optimize light absorption, enhancing solar cell efficiency. Ionization energy is ideal for sensors, while variants doped with Cu-gC3N4, Cd-gC3N4, or Se-gC3N4 enhance photodetectors, offering strong visible absorption and efficient charge transport for improved performance. Moreover, g-C3N4 doped with GaN3-gC3N4, Cu-gC3N4, and W-gC3N4 are all found to possess high thermodynamic stabilities for hydrogen storage. Our findings demonstrate that doping is a powerful strategy to optimize g-C3N4 for advanced technological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信