基于深度神经网络模型的气候数据变异对PM2.5浓度时空模拟的影响

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Mark Joseph Calubad , Mamad Tamamadin , Jurng-Jae Yee
{"title":"基于深度神经网络模型的气候数据变异对PM2.5浓度时空模拟的影响","authors":"Mark Joseph Calubad ,&nbsp;Mamad Tamamadin ,&nbsp;Jurng-Jae Yee","doi":"10.1016/j.apr.2025.102577","DOIUrl":null,"url":null,"abstract":"<div><div>Meteorological parameters have been used as features in spatiotemporal PM<sub>2.5</sub> models owing to their influence on the formation, concentration, and dispersion of PM<sub>2.5</sub> particles. This study investigated the effectiveness of various meteorological datasets, resampled using different methods, in predicting PM<sub>2.5</sub> concentrations with optimized deep neural network (DNN) models. The results showed that a cubic-spline-resampled European Centre for Medium-Range Weather Forecasts (ECMWF) dataset, as a meteorological feature in the DNN models, produced the best results in predicting PM<sub>2.5</sub> values with MAE and RMSE values of 3.597 and 5.363 μg/m<sup>3</sup>, respectively. Day of the year, the aerosol optical depth, and temperature were the features with the most significant influence in predicting PM<sub>2.5</sub> concentrations based on their SHAP values for each DNN models. The distribution and correlations between resampled values of each resampling method and dataset combination were discussed. This study also discusses future exploration for improving the spatiotemporal PM<sub>2.5</sub>-concentration modelling process.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 9","pages":"Article 102577"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of climate dataset variability on spatiotemporal modelling of PM2.5 concentration using deep neural network models\",\"authors\":\"Mark Joseph Calubad ,&nbsp;Mamad Tamamadin ,&nbsp;Jurng-Jae Yee\",\"doi\":\"10.1016/j.apr.2025.102577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meteorological parameters have been used as features in spatiotemporal PM<sub>2.5</sub> models owing to their influence on the formation, concentration, and dispersion of PM<sub>2.5</sub> particles. This study investigated the effectiveness of various meteorological datasets, resampled using different methods, in predicting PM<sub>2.5</sub> concentrations with optimized deep neural network (DNN) models. The results showed that a cubic-spline-resampled European Centre for Medium-Range Weather Forecasts (ECMWF) dataset, as a meteorological feature in the DNN models, produced the best results in predicting PM<sub>2.5</sub> values with MAE and RMSE values of 3.597 and 5.363 μg/m<sup>3</sup>, respectively. Day of the year, the aerosol optical depth, and temperature were the features with the most significant influence in predicting PM<sub>2.5</sub> concentrations based on their SHAP values for each DNN models. The distribution and correlations between resampled values of each resampling method and dataset combination were discussed. This study also discusses future exploration for improving the spatiotemporal PM<sub>2.5</sub>-concentration modelling process.</div></div>\",\"PeriodicalId\":8604,\"journal\":{\"name\":\"Atmospheric Pollution Research\",\"volume\":\"16 9\",\"pages\":\"Article 102577\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1309104225001795\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001795","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于气象参数对PM2.5颗粒的形成、浓度和扩散的影响,因此在PM2.5时空模型中被用作特征。本研究利用优化的深度神经网络(DNN)模型,利用不同的方法对不同的气象数据集进行重新采样,并对其预测PM2.5浓度的有效性进行了研究。结果表明,三次样条重采样的欧洲中期天气预报中心(ECMWF)数据集作为DNN模型中的气象特征,在预测PM2.5值方面效果最好,MAE和RMSE分别为3.597和5.363 μg/m3。在各DNN模型中,日、气溶胶光学深度和温度是基于其SHAP值预测PM2.5浓度影响最大的特征。讨论了各种重采样方法和数据集组合的重采样值的分布和相关性。本研究还讨论了改进时空pm2.5浓度模拟过程的未来探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of climate dataset variability on spatiotemporal modelling of PM2.5 concentration using deep neural network models

Impact of climate dataset variability on spatiotemporal modelling of PM2.5 concentration using deep neural network models
Meteorological parameters have been used as features in spatiotemporal PM2.5 models owing to their influence on the formation, concentration, and dispersion of PM2.5 particles. This study investigated the effectiveness of various meteorological datasets, resampled using different methods, in predicting PM2.5 concentrations with optimized deep neural network (DNN) models. The results showed that a cubic-spline-resampled European Centre for Medium-Range Weather Forecasts (ECMWF) dataset, as a meteorological feature in the DNN models, produced the best results in predicting PM2.5 values with MAE and RMSE values of 3.597 and 5.363 μg/m3, respectively. Day of the year, the aerosol optical depth, and temperature were the features with the most significant influence in predicting PM2.5 concentrations based on their SHAP values for each DNN models. The distribution and correlations between resampled values of each resampling method and dataset combination were discussed. This study also discusses future exploration for improving the spatiotemporal PM2.5-concentration modelling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信