{"title":"高阶数值范围的凸代数几何","authors":"Jonathan Niño-Cortés, Cynthia Vinzant","doi":"10.1016/j.jsc.2025.102457","DOIUrl":null,"url":null,"abstract":"<div><div>The higher-rank numerical range is a convex compact set generalizing the classical numerical range of a square complex matrix, first appearing in the study of quantum error correction. We will discuss some of the real algebraic and convex geometry of these sets, including a generalization of Kippenhahn's theorem, and describe an algorithm to explicitly calculate the higher-rank numerical range of a given matrix.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102457"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The convex algebraic geometry of higher-rank numerical ranges\",\"authors\":\"Jonathan Niño-Cortés, Cynthia Vinzant\",\"doi\":\"10.1016/j.jsc.2025.102457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The higher-rank numerical range is a convex compact set generalizing the classical numerical range of a square complex matrix, first appearing in the study of quantum error correction. We will discuss some of the real algebraic and convex geometry of these sets, including a generalization of Kippenhahn's theorem, and describe an algorithm to explicitly calculate the higher-rank numerical range of a given matrix.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102457\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000392\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000392","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The convex algebraic geometry of higher-rank numerical ranges
The higher-rank numerical range is a convex compact set generalizing the classical numerical range of a square complex matrix, first appearing in the study of quantum error correction. We will discuss some of the real algebraic and convex geometry of these sets, including a generalization of Kippenhahn's theorem, and describe an algorithm to explicitly calculate the higher-rank numerical range of a given matrix.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.