耦合常数变态,费马原理和光在克尔度规中的传播

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Joanna Piwnik, Cezary Gonera, Joanna Gonera, Piotr Kosiński
{"title":"耦合常数变态,费马原理和光在克尔度规中的传播","authors":"Joanna Piwnik,&nbsp;Cezary Gonera,&nbsp;Joanna Gonera,&nbsp;Piotr Kosiński","doi":"10.1016/j.nuclphysb.2025.116967","DOIUrl":null,"url":null,"abstract":"<div><div>The geodesics of Kerr's metric are described by the four-dimensional Hamiltonian dynamics integrable in the Arnold-Liouville sense. It can be reduced to two-dimensional one by the use of Fermat's principle. The resulting Hamiltonian is, however, rather complicated. We show how one can apply the coupling constant metamorphosis to simplify the Hamiltonian to the one quadratic in momenta and depending on the initial “energy” as parameter. It describes a simple dynamics of two non-linear oscillators and can be integrated directly or evaluated in the framework of perturbation theory by adopting the elegant Lindstedt–Poincaré algorithm. The idea of coupling constant metamorphosis is also applied to the Myers–Perry metric — a five dimensional generalization of Kerr's metric. The case of single rotation parameter is considered in some detail.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1017 ","pages":"Article 116967"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling constant metamorphosis, Fermat principle and light propagation in Kerr metric\",\"authors\":\"Joanna Piwnik,&nbsp;Cezary Gonera,&nbsp;Joanna Gonera,&nbsp;Piotr Kosiński\",\"doi\":\"10.1016/j.nuclphysb.2025.116967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The geodesics of Kerr's metric are described by the four-dimensional Hamiltonian dynamics integrable in the Arnold-Liouville sense. It can be reduced to two-dimensional one by the use of Fermat's principle. The resulting Hamiltonian is, however, rather complicated. We show how one can apply the coupling constant metamorphosis to simplify the Hamiltonian to the one quadratic in momenta and depending on the initial “energy” as parameter. It describes a simple dynamics of two non-linear oscillators and can be integrated directly or evaluated in the framework of perturbation theory by adopting the elegant Lindstedt–Poincaré algorithm. The idea of coupling constant metamorphosis is also applied to the Myers–Perry metric — a five dimensional generalization of Kerr's metric. The case of single rotation parameter is considered in some detail.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1017 \",\"pages\":\"Article 116967\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325001762\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325001762","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

克尔度规的测地线用阿诺德-刘维尔意义上可积的四维哈密顿动力学来描述。利用费马原理可以将其还原为二维。然而,得到的哈密顿量相当复杂。我们展示了如何应用耦合常数变形将哈密顿量简化为动量的一次二次,并依赖于初始“能量”作为参数。它描述了两个非线性振子的简单动力学,可以采用优雅的lindstedt - poincar算法在摄动理论的框架内直接积分或求值。耦合常数变形的思想也适用于Myers-Perry度规——Kerr度规的五维推广。详细考虑了单旋转参数的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling constant metamorphosis, Fermat principle and light propagation in Kerr metric
The geodesics of Kerr's metric are described by the four-dimensional Hamiltonian dynamics integrable in the Arnold-Liouville sense. It can be reduced to two-dimensional one by the use of Fermat's principle. The resulting Hamiltonian is, however, rather complicated. We show how one can apply the coupling constant metamorphosis to simplify the Hamiltonian to the one quadratic in momenta and depending on the initial “energy” as parameter. It describes a simple dynamics of two non-linear oscillators and can be integrated directly or evaluated in the framework of perturbation theory by adopting the elegant Lindstedt–Poincaré algorithm. The idea of coupling constant metamorphosis is also applied to the Myers–Perry metric — a five dimensional generalization of Kerr's metric. The case of single rotation parameter is considered in some detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信