基于Micro-CT的PEMFC gdl各向异性热传导模型研究

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hang Liu , Xuecheng Lv , Heng Huang , Yang Li , Deqi Li , Zhifu Zhou , Wei-Tao Wu , Lei Wei , Yubai Li , Yongchen Song
{"title":"基于Micro-CT的PEMFC gdl各向异性热传导模型研究","authors":"Hang Liu ,&nbsp;Xuecheng Lv ,&nbsp;Heng Huang ,&nbsp;Yang Li ,&nbsp;Deqi Li ,&nbsp;Zhifu Zhou ,&nbsp;Wei-Tao Wu ,&nbsp;Lei Wei ,&nbsp;Yubai Li ,&nbsp;Yongchen Song","doi":"10.1016/j.ijheatmasstransfer.2025.127302","DOIUrl":null,"url":null,"abstract":"<div><div>The gas diffusion layer (GDL) serves as a pivotal component governing heat transfer in proton exchange membrane fuel cells (PEMFCs). Excessive heat accumulation within the catalyst layer may lead to irreversible degradation of electrochemical activity due to accelerated catalyst sintering and carbon support corrosion. Building upon multi-modal characterization integrating micro-computed tomography (Micro-CT) and scanning electron microscopy (SEM) of GDLs, this investigation systematically deciphers the interdependent relationships between fiber architecture, sphere network topology, and compression-mediated morphological evolution through advanced computational analytics and finite element modeling. The quantified synergy elucidates microstructure-property linkages governing anisotropic thermal and gas transport phenomena. The computational findings reveal pronounced anisotropic thermal conduction characteristics within GDLs, demonstrating significantly inferior thermal transport capabilities in the through-plane (TP) direction compared to the in-plane (IP) direction. Reduced fiber length diminishes multi-directional heat dissipation, whereas GDL thickening enhances multi-directional thermal transport efficiency. Quantitative analysis demonstrates a 23-fold higher susceptibility of effective thermal conductivity (ETC) to compression ratio compared to thickness variation, conclusively establishing microstructural heterogeneity as the primary determinant of anisotropic thermal transport. Spatially resolved thermal flux mapping reveals strong geometric coupling with porosity gradients. These multiscale findings provide new design paradigms for optimizing GDL architectures through targeted manipulation of fiber-sphere coupling mechanics.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"250 ","pages":"Article 127302"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling study on anisotropic heat conduction of PEMFC GDLs facilitated by Micro-CT\",\"authors\":\"Hang Liu ,&nbsp;Xuecheng Lv ,&nbsp;Heng Huang ,&nbsp;Yang Li ,&nbsp;Deqi Li ,&nbsp;Zhifu Zhou ,&nbsp;Wei-Tao Wu ,&nbsp;Lei Wei ,&nbsp;Yubai Li ,&nbsp;Yongchen Song\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The gas diffusion layer (GDL) serves as a pivotal component governing heat transfer in proton exchange membrane fuel cells (PEMFCs). Excessive heat accumulation within the catalyst layer may lead to irreversible degradation of electrochemical activity due to accelerated catalyst sintering and carbon support corrosion. Building upon multi-modal characterization integrating micro-computed tomography (Micro-CT) and scanning electron microscopy (SEM) of GDLs, this investigation systematically deciphers the interdependent relationships between fiber architecture, sphere network topology, and compression-mediated morphological evolution through advanced computational analytics and finite element modeling. The quantified synergy elucidates microstructure-property linkages governing anisotropic thermal and gas transport phenomena. The computational findings reveal pronounced anisotropic thermal conduction characteristics within GDLs, demonstrating significantly inferior thermal transport capabilities in the through-plane (TP) direction compared to the in-plane (IP) direction. Reduced fiber length diminishes multi-directional heat dissipation, whereas GDL thickening enhances multi-directional thermal transport efficiency. Quantitative analysis demonstrates a 23-fold higher susceptibility of effective thermal conductivity (ETC) to compression ratio compared to thickness variation, conclusively establishing microstructural heterogeneity as the primary determinant of anisotropic thermal transport. Spatially resolved thermal flux mapping reveals strong geometric coupling with porosity gradients. These multiscale findings provide new design paradigms for optimizing GDL architectures through targeted manipulation of fiber-sphere coupling mechanics.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"250 \",\"pages\":\"Article 127302\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025006416\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025006416","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在质子交换膜燃料电池(pemfc)中,气体扩散层(GDL)是控制传热的关键部件。由于催化剂的加速烧结和碳载体的腐蚀,催化剂层内过多的热量积累可能导致电化学活性的不可逆退化。基于集成微计算机断层扫描(Micro-CT)和扫描电子显微镜(SEM)的多模态表征,本研究通过先进的计算分析和有限元建模系统地解读了光纤结构、球体网络拓扑和压缩介导的形态演化之间的相互依存关系。量化的协同作用阐明了控制各向异性热和气体输运现象的微观结构-性质联系。计算结果揭示了gdl内明显的各向异性热传导特性,表明与面内(IP)方向相比,通过面(TP)方向的热传输能力明显较差。纤维长度的减少减少了多向散热,而GDL增厚提高了多向热传输效率。定量分析表明,与厚度变化相比,有效热导率(ETC)对压缩比的敏感性高23倍,最终确定微观结构非均质性是各向异性热输运的主要决定因素。空间分辨热通量映射显示了与孔隙度梯度的强几何耦合。这些多尺度的发现为通过有针对性地操纵纤维球耦合力学来优化GDL体系结构提供了新的设计范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling study on anisotropic heat conduction of PEMFC GDLs facilitated by Micro-CT
The gas diffusion layer (GDL) serves as a pivotal component governing heat transfer in proton exchange membrane fuel cells (PEMFCs). Excessive heat accumulation within the catalyst layer may lead to irreversible degradation of electrochemical activity due to accelerated catalyst sintering and carbon support corrosion. Building upon multi-modal characterization integrating micro-computed tomography (Micro-CT) and scanning electron microscopy (SEM) of GDLs, this investigation systematically deciphers the interdependent relationships between fiber architecture, sphere network topology, and compression-mediated morphological evolution through advanced computational analytics and finite element modeling. The quantified synergy elucidates microstructure-property linkages governing anisotropic thermal and gas transport phenomena. The computational findings reveal pronounced anisotropic thermal conduction characteristics within GDLs, demonstrating significantly inferior thermal transport capabilities in the through-plane (TP) direction compared to the in-plane (IP) direction. Reduced fiber length diminishes multi-directional heat dissipation, whereas GDL thickening enhances multi-directional thermal transport efficiency. Quantitative analysis demonstrates a 23-fold higher susceptibility of effective thermal conductivity (ETC) to compression ratio compared to thickness variation, conclusively establishing microstructural heterogeneity as the primary determinant of anisotropic thermal transport. Spatially resolved thermal flux mapping reveals strong geometric coupling with porosity gradients. These multiscale findings provide new design paradigms for optimizing GDL architectures through targeted manipulation of fiber-sphere coupling mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信