连接的力量:通过膜接触位点理解线粒体动力学调节的最新进展

IF 6 2区 生物学 Q1 CELL BIOLOGY
Jason C. Casler, Laura L. Lackner
{"title":"连接的力量:通过膜接触位点理解线粒体动力学调节的最新进展","authors":"Jason C. Casler,&nbsp;Laura L. Lackner","doi":"10.1016/j.ceb.2025.102535","DOIUrl":null,"url":null,"abstract":"<div><div>The continuous remodeling of the mitochondrial network through fusion, fission, transport, and turnover events, collectively known as mitochondrial dynamics, is essential for the maintenance of mitochondrial metabolic and genomic health. While the primary molecular machines that mediate these processes were discovered decades ago, the regulation of mitochondrial dynamics clearly involves additional factors. A major breakthrough came from the discovery that sites of close apposition between organelles, known as membrane contact sites (MCSs), serve as critical regulators of organelle function. MCSs between mitochondria and the ER are now universally recognized as important regulatory hubs of mitochondrial dynamics. Despite this, there are still many unknowns pertaining to the mechanisms by which MCSs influence mitochondrial dynamics. In this review, we describe recent progress identifying novel protein and lipid components that regulate mitochondrial dynamics and emphasize clear gaps in our understanding of how mitochondrial dynamics are coordinated at MCSs. Finally, we conclude by discussing progress towards defining the highly biomedically relevant, but enigmatic, role of mitochondrial dynamics in the preservation of mitochondrial DNA integrity.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102535"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The power of connections: Recent advances in understanding the regulation of mitochondrial dynamics by membrane contact sites\",\"authors\":\"Jason C. Casler,&nbsp;Laura L. Lackner\",\"doi\":\"10.1016/j.ceb.2025.102535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The continuous remodeling of the mitochondrial network through fusion, fission, transport, and turnover events, collectively known as mitochondrial dynamics, is essential for the maintenance of mitochondrial metabolic and genomic health. While the primary molecular machines that mediate these processes were discovered decades ago, the regulation of mitochondrial dynamics clearly involves additional factors. A major breakthrough came from the discovery that sites of close apposition between organelles, known as membrane contact sites (MCSs), serve as critical regulators of organelle function. MCSs between mitochondria and the ER are now universally recognized as important regulatory hubs of mitochondrial dynamics. Despite this, there are still many unknowns pertaining to the mechanisms by which MCSs influence mitochondrial dynamics. In this review, we describe recent progress identifying novel protein and lipid components that regulate mitochondrial dynamics and emphasize clear gaps in our understanding of how mitochondrial dynamics are coordinated at MCSs. Finally, we conclude by discussing progress towards defining the highly biomedically relevant, but enigmatic, role of mitochondrial dynamics in the preservation of mitochondrial DNA integrity.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"95 \",\"pages\":\"Article 102535\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425000730\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000730","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体网络通过融合、裂变、转运和周转事件的持续重塑,统称为线粒体动力学,对维持线粒体代谢和基因组健康至关重要。虽然介导这些过程的主要分子机器在几十年前就被发现了,但线粒体动力学的调节显然涉及其他因素。一个重大的突破来自于发现细胞器之间紧密结合的位点,即膜接触位点(MCSs),是细胞器功能的关键调节因子。线粒体和内质网之间的MCSs现在被普遍认为是线粒体动力学的重要调控中心。尽管如此,关于mcs影响线粒体动力学的机制仍有许多未知因素。在这篇综述中,我们描述了最近发现的调节线粒体动力学的新蛋白质和脂质成分的进展,并强调了我们对线粒体动力学如何在mcs中协调的理解的明确空白。最后,我们通过讨论在定义高度生物医学相关但神秘的线粒体动力学在保存线粒体DNA完整性中的作用方面的进展来结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The power of connections: Recent advances in understanding the regulation of mitochondrial dynamics by membrane contact sites
The continuous remodeling of the mitochondrial network through fusion, fission, transport, and turnover events, collectively known as mitochondrial dynamics, is essential for the maintenance of mitochondrial metabolic and genomic health. While the primary molecular machines that mediate these processes were discovered decades ago, the regulation of mitochondrial dynamics clearly involves additional factors. A major breakthrough came from the discovery that sites of close apposition between organelles, known as membrane contact sites (MCSs), serve as critical regulators of organelle function. MCSs between mitochondria and the ER are now universally recognized as important regulatory hubs of mitochondrial dynamics. Despite this, there are still many unknowns pertaining to the mechanisms by which MCSs influence mitochondrial dynamics. In this review, we describe recent progress identifying novel protein and lipid components that regulate mitochondrial dynamics and emphasize clear gaps in our understanding of how mitochondrial dynamics are coordinated at MCSs. Finally, we conclude by discussing progress towards defining the highly biomedically relevant, but enigmatic, role of mitochondrial dynamics in the preservation of mitochondrial DNA integrity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信