Aasma Khalid , Inamul Haq , Akmal Rehan , M.S. Osman
{"title":"发展和应用三次样条法求解复杂物理和工程系统的边值问题","authors":"Aasma Khalid , Inamul Haq , Akmal Rehan , M.S. Osman","doi":"10.1016/j.padiff.2025.101224","DOIUrl":null,"url":null,"abstract":"<div><div>It has long been a concern of researchers to address the challenges of solving higher-order differential equations. In order to approximate 11th-order boundary value problems (BVPs), this work presents a novel numerical approach that combines decomposition techniques with polynomial and Non-Polynomial Splines of third order. The method starts with a decomposition process that breaks down 11th-order BVPs into a system of second-order BVPs, breaking the problem down into smaller, more manageable parts. First-order derivatives are approximated using finite central differences, and each second-order ordinary differential equation is solved using both spline methods. These methods improve accuracy and efficiency when handling complex BVPs by providing a thorough framework for solving high-order differential equations. Comparing numerical responses with the precise response on a variety of examples was part of the numerical evaluations.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101224"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing and applying cubic spline method for the solution of boundary value problems in complex physical and engineering systems\",\"authors\":\"Aasma Khalid , Inamul Haq , Akmal Rehan , M.S. Osman\",\"doi\":\"10.1016/j.padiff.2025.101224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has long been a concern of researchers to address the challenges of solving higher-order differential equations. In order to approximate 11th-order boundary value problems (BVPs), this work presents a novel numerical approach that combines decomposition techniques with polynomial and Non-Polynomial Splines of third order. The method starts with a decomposition process that breaks down 11th-order BVPs into a system of second-order BVPs, breaking the problem down into smaller, more manageable parts. First-order derivatives are approximated using finite central differences, and each second-order ordinary differential equation is solved using both spline methods. These methods improve accuracy and efficiency when handling complex BVPs by providing a thorough framework for solving high-order differential equations. Comparing numerical responses with the precise response on a variety of examples was part of the numerical evaluations.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Developing and applying cubic spline method for the solution of boundary value problems in complex physical and engineering systems
It has long been a concern of researchers to address the challenges of solving higher-order differential equations. In order to approximate 11th-order boundary value problems (BVPs), this work presents a novel numerical approach that combines decomposition techniques with polynomial and Non-Polynomial Splines of third order. The method starts with a decomposition process that breaks down 11th-order BVPs into a system of second-order BVPs, breaking the problem down into smaller, more manageable parts. First-order derivatives are approximated using finite central differences, and each second-order ordinary differential equation is solved using both spline methods. These methods improve accuracy and efficiency when handling complex BVPs by providing a thorough framework for solving high-order differential equations. Comparing numerical responses with the precise response on a variety of examples was part of the numerical evaluations.