{"title":"锁子甲织物的刚度可调","authors":"Miao Miao Yuan , Bo Hua Sun","doi":"10.1016/j.compstruct.2025.119237","DOIUrl":null,"url":null,"abstract":"<div><div>Adjustable stiffness chain mail fabrics, composed of interlocking 3D single-cell particles, attract significant interest for their flexibility, impact resistance, and controllable stiffness. This study aims to investigate the mechanical properties of in-vacuo chain mail fabric through a combination of experimental and numerical simulation methods. First, three different chain mail fabrics composed of various single-cell particles were produced. Subsequently, different external pressures were applied to the fabric to transform it into a load-bearing structure. Finally, three-point bending tests were conducted on the in-vacuo chain mail fabric, and numerical simulations were performed using the finite element software ABAQUS. The research shows that the apparent bending modulus, peak load, and energy absorption capacity of the in-vacuo chain mail fabric increase with the external pressure. When the external pressure reaches 64.5 kPa, the in-vacuo fabric’s apparent elastic bending modulus, peak load, and energy absorption capacity increase by 6 times, 16 times, and 15 times, respectively. Notably, when the three-dimensional particles is square, the in-vacuo fabric exhibits higher load-bearing capacity. Combining the experimental results and numerical simulation results show that the ”tensile contact” and ”compressive contact” between interlocking particles have a significant impact on the overall mechanical properties of the chain mail fabric.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"368 ","pages":"Article 119237"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjustable stiffness of chain mail fabrics\",\"authors\":\"Miao Miao Yuan , Bo Hua Sun\",\"doi\":\"10.1016/j.compstruct.2025.119237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adjustable stiffness chain mail fabrics, composed of interlocking 3D single-cell particles, attract significant interest for their flexibility, impact resistance, and controllable stiffness. This study aims to investigate the mechanical properties of in-vacuo chain mail fabric through a combination of experimental and numerical simulation methods. First, three different chain mail fabrics composed of various single-cell particles were produced. Subsequently, different external pressures were applied to the fabric to transform it into a load-bearing structure. Finally, three-point bending tests were conducted on the in-vacuo chain mail fabric, and numerical simulations were performed using the finite element software ABAQUS. The research shows that the apparent bending modulus, peak load, and energy absorption capacity of the in-vacuo chain mail fabric increase with the external pressure. When the external pressure reaches 64.5 kPa, the in-vacuo fabric’s apparent elastic bending modulus, peak load, and energy absorption capacity increase by 6 times, 16 times, and 15 times, respectively. Notably, when the three-dimensional particles is square, the in-vacuo fabric exhibits higher load-bearing capacity. Combining the experimental results and numerical simulation results show that the ”tensile contact” and ”compressive contact” between interlocking particles have a significant impact on the overall mechanical properties of the chain mail fabric.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"368 \",\"pages\":\"Article 119237\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325004027\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325004027","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Adjustable stiffness chain mail fabrics, composed of interlocking 3D single-cell particles, attract significant interest for their flexibility, impact resistance, and controllable stiffness. This study aims to investigate the mechanical properties of in-vacuo chain mail fabric through a combination of experimental and numerical simulation methods. First, three different chain mail fabrics composed of various single-cell particles were produced. Subsequently, different external pressures were applied to the fabric to transform it into a load-bearing structure. Finally, three-point bending tests were conducted on the in-vacuo chain mail fabric, and numerical simulations were performed using the finite element software ABAQUS. The research shows that the apparent bending modulus, peak load, and energy absorption capacity of the in-vacuo chain mail fabric increase with the external pressure. When the external pressure reaches 64.5 kPa, the in-vacuo fabric’s apparent elastic bending modulus, peak load, and energy absorption capacity increase by 6 times, 16 times, and 15 times, respectively. Notably, when the three-dimensional particles is square, the in-vacuo fabric exhibits higher load-bearing capacity. Combining the experimental results and numerical simulation results show that the ”tensile contact” and ”compressive contact” between interlocking particles have a significant impact on the overall mechanical properties of the chain mail fabric.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.