通过氧化镨渗透表面保护层提高Sr1.9Fe1.5Mo0.5O6 -δ电极在固体氧化物燃料电池中的纳米颗粒稳定性

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-05-28 DOI:10.1016/j.fuel.2025.135813
Yujie Wu , Jiyoon Shin , Hao-Yang Li , Zhe Lv , Pei-Chen Su
{"title":"通过氧化镨渗透表面保护层提高Sr1.9Fe1.5Mo0.5O6 -δ电极在固体氧化物燃料电池中的纳米颗粒稳定性","authors":"Yujie Wu ,&nbsp;Jiyoon Shin ,&nbsp;Hao-Yang Li ,&nbsp;Zhe Lv ,&nbsp;Pei-Chen Su","doi":"10.1016/j.fuel.2025.135813","DOIUrl":null,"url":null,"abstract":"<div><div>Mitigating nanoparticle agglomeration on anode ceramic electrodes is critical for maintaining performance during the long-term operation of solid oxide fuel cells. We infiltrate praseodymium into A-site deficient Sr<sub>1.9</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6–δ</sub> (SFM), where the surface exsolved Fe nanoparticles due to the non-stoichiometric composition are effectively stabilized to improve the SFM electrode stability. The infiltrated praseodymium reacts with exsolved surface Fe nanoparticles and forms praseodymium ferrite, while the excess Pr<sub>6</sub>O<sub>11</sub> reduces to Pr<sub>x</sub>O<sub>y</sub>, creating a protective surface film to mitigate Fe nanoparticle degradation and improving the electrode performance stability. The infiltrated Pr also improves surface charge transfer, significantly reducing electrode polarization resistance. The infiltrated Pr surface protective layer offers a promising strategy for long-term electrode durability in solid oxide fuel cells.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"400 ","pages":"Article 135813"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing nanoparticle stability of Sr1.9Fe1.5Mo0.5O6–δ electrode in solid oxide fuel cells via praseodymium oxide infiltrated surface protection layer\",\"authors\":\"Yujie Wu ,&nbsp;Jiyoon Shin ,&nbsp;Hao-Yang Li ,&nbsp;Zhe Lv ,&nbsp;Pei-Chen Su\",\"doi\":\"10.1016/j.fuel.2025.135813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitigating nanoparticle agglomeration on anode ceramic electrodes is critical for maintaining performance during the long-term operation of solid oxide fuel cells. We infiltrate praseodymium into A-site deficient Sr<sub>1.9</sub>Fe<sub>1.5</sub>Mo<sub>0.5</sub>O<sub>6–δ</sub> (SFM), where the surface exsolved Fe nanoparticles due to the non-stoichiometric composition are effectively stabilized to improve the SFM electrode stability. The infiltrated praseodymium reacts with exsolved surface Fe nanoparticles and forms praseodymium ferrite, while the excess Pr<sub>6</sub>O<sub>11</sub> reduces to Pr<sub>x</sub>O<sub>y</sub>, creating a protective surface film to mitigate Fe nanoparticle degradation and improving the electrode performance stability. The infiltrated Pr also improves surface charge transfer, significantly reducing electrode polarization resistance. The infiltrated Pr surface protective layer offers a promising strategy for long-term electrode durability in solid oxide fuel cells.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"400 \",\"pages\":\"Article 135813\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125015388\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125015388","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在固体氧化物燃料电池的长期运行过程中,减少纳米颗粒在阳极陶瓷电极上的团聚是保持电池性能的关键。我们将镨渗透到缺乏a位的Sr1.9Fe1.5Mo0.5O6 -δ (SFM)中,由于其非化学计量组成,表面暴露的Fe纳米粒子被有效稳定,提高了SFM电极的稳定性。渗入的镨与表面的铁纳米颗粒反应形成镨铁氧体,而过量的Pr6O11还原为PrxOy,形成一层保护表面膜,以减轻铁纳米颗粒的降解,提高电极性能的稳定性。渗入的Pr还改善了表面电荷转移,显著降低了电极极化电阻。渗透Pr表面保护层为固体氧化物燃料电池的长期电极耐久性提供了一种很有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing nanoparticle stability of Sr1.9Fe1.5Mo0.5O6–δ electrode in solid oxide fuel cells via praseodymium oxide infiltrated surface protection layer
Mitigating nanoparticle agglomeration on anode ceramic electrodes is critical for maintaining performance during the long-term operation of solid oxide fuel cells. We infiltrate praseodymium into A-site deficient Sr1.9Fe1.5Mo0.5O6–δ (SFM), where the surface exsolved Fe nanoparticles due to the non-stoichiometric composition are effectively stabilized to improve the SFM electrode stability. The infiltrated praseodymium reacts with exsolved surface Fe nanoparticles and forms praseodymium ferrite, while the excess Pr6O11 reduces to PrxOy, creating a protective surface film to mitigate Fe nanoparticle degradation and improving the electrode performance stability. The infiltrated Pr also improves surface charge transfer, significantly reducing electrode polarization resistance. The infiltrated Pr surface protective layer offers a promising strategy for long-term electrode durability in solid oxide fuel cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信