{"title":"人参皂苷C-K通过调节小胶质细胞-神经元相互作用抑制Aβ寡聚物诱导的阿尔茨海默病病理进展","authors":"Chenghu Xie , Cunxin Zhang , Kefeng Zhang , Shanshan Zhang","doi":"10.1016/j.ibneur.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Alzheimer’s disease is a progressive neurodegenerative disorder. Current therapeutic agents primarily focus on symptom alleviation and fail to effectively halt disease progression. Therefore, there is a need to develop novel therapeutic strategies, particularly those involving natural active compounds with multi-target actions.</div></div><div><h3>Objective</h3><div>To investigate the intervention effects and multi-target regulatory mechanisms of Ginsenoside C-K (GCK) on β-amyloid (Aβ) oligomer-induced Alzheimer's disease (AD) pathological progression.</div></div><div><h3>Methods</h3><div>BV2 microglia and HT22 neurons were used as in vitro models. Cell viability was measured via CCK-8 assay, cell migration ability assessed by scratch assay, and apoptosis rate analyzed using Annexin V/PI dual staining. A conditioned medium (CM) strategy was employed to validate microglia-neuron interactions. Western blot was performed to detect key NF-κB signaling pathway proteins (p-IκBα, p-p65) and inflammatory cytokines (TNF-α, IL-1β).</div></div><div><h3>Results</h3><div>GCK pretreatment significantly ameliorated Aβ₁₋₄₂ oligomer-induced BV2 cell dysfunction (viability recovery rate >80 %, p < 0.01), suppressed pro-inflammatory cytokine secretion (TNF-α reduced by 62.3 %, IL-1β by 57.8 %), and inhibited NF-κB pathway activation (p-IκBα/p-p65 expression downregulated >50 %). In HT22 neurons, GCK directly counteracted Aβ toxicity (apoptosis rate decreased from 38.7 % to 15.2 %) and exerted indirect neuroprotection by modulating microglia-derived conditioned medium (CM2 group showed a 2.1-fold increase in neuronal viability compared to CM1).</div></div><div><h3>Conclusion</h3><div>GCK mitigates AD pathology through dual mechanisms-direct inhibition of Aβ neurotoxicity and indirect regulation of microglial homeostasis-with NF-κB signaling suppression as a core mechanism. This study provides new experimental evidence for natural product-based multi-target AD therapies, though further animal studies are required to validate its in vivo efficacy and safety.</div></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":"18 ","pages":"Pages 783-793"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside C-K inhibits Aβ oligomer-induced Alzheimer's disease pathology progression by regulating microglia-neuron interactions\",\"authors\":\"Chenghu Xie , Cunxin Zhang , Kefeng Zhang , Shanshan Zhang\",\"doi\":\"10.1016/j.ibneur.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Alzheimer’s disease is a progressive neurodegenerative disorder. Current therapeutic agents primarily focus on symptom alleviation and fail to effectively halt disease progression. Therefore, there is a need to develop novel therapeutic strategies, particularly those involving natural active compounds with multi-target actions.</div></div><div><h3>Objective</h3><div>To investigate the intervention effects and multi-target regulatory mechanisms of Ginsenoside C-K (GCK) on β-amyloid (Aβ) oligomer-induced Alzheimer's disease (AD) pathological progression.</div></div><div><h3>Methods</h3><div>BV2 microglia and HT22 neurons were used as in vitro models. Cell viability was measured via CCK-8 assay, cell migration ability assessed by scratch assay, and apoptosis rate analyzed using Annexin V/PI dual staining. A conditioned medium (CM) strategy was employed to validate microglia-neuron interactions. Western blot was performed to detect key NF-κB signaling pathway proteins (p-IκBα, p-p65) and inflammatory cytokines (TNF-α, IL-1β).</div></div><div><h3>Results</h3><div>GCK pretreatment significantly ameliorated Aβ₁₋₄₂ oligomer-induced BV2 cell dysfunction (viability recovery rate >80 %, p < 0.01), suppressed pro-inflammatory cytokine secretion (TNF-α reduced by 62.3 %, IL-1β by 57.8 %), and inhibited NF-κB pathway activation (p-IκBα/p-p65 expression downregulated >50 %). In HT22 neurons, GCK directly counteracted Aβ toxicity (apoptosis rate decreased from 38.7 % to 15.2 %) and exerted indirect neuroprotection by modulating microglia-derived conditioned medium (CM2 group showed a 2.1-fold increase in neuronal viability compared to CM1).</div></div><div><h3>Conclusion</h3><div>GCK mitigates AD pathology through dual mechanisms-direct inhibition of Aβ neurotoxicity and indirect regulation of microglial homeostasis-with NF-κB signaling suppression as a core mechanism. This study provides new experimental evidence for natural product-based multi-target AD therapies, though further animal studies are required to validate its in vivo efficacy and safety.</div></div>\",\"PeriodicalId\":13195,\"journal\":{\"name\":\"IBRO Neuroscience Reports\",\"volume\":\"18 \",\"pages\":\"Pages 783-793\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBRO Neuroscience Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667242125000740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242125000740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Alzheimer’s disease is a progressive neurodegenerative disorder. Current therapeutic agents primarily focus on symptom alleviation and fail to effectively halt disease progression. Therefore, there is a need to develop novel therapeutic strategies, particularly those involving natural active compounds with multi-target actions.
Objective
To investigate the intervention effects and multi-target regulatory mechanisms of Ginsenoside C-K (GCK) on β-amyloid (Aβ) oligomer-induced Alzheimer's disease (AD) pathological progression.
Methods
BV2 microglia and HT22 neurons were used as in vitro models. Cell viability was measured via CCK-8 assay, cell migration ability assessed by scratch assay, and apoptosis rate analyzed using Annexin V/PI dual staining. A conditioned medium (CM) strategy was employed to validate microglia-neuron interactions. Western blot was performed to detect key NF-κB signaling pathway proteins (p-IκBα, p-p65) and inflammatory cytokines (TNF-α, IL-1β).
Results
GCK pretreatment significantly ameliorated Aβ₁₋₄₂ oligomer-induced BV2 cell dysfunction (viability recovery rate >80 %, p < 0.01), suppressed pro-inflammatory cytokine secretion (TNF-α reduced by 62.3 %, IL-1β by 57.8 %), and inhibited NF-κB pathway activation (p-IκBα/p-p65 expression downregulated >50 %). In HT22 neurons, GCK directly counteracted Aβ toxicity (apoptosis rate decreased from 38.7 % to 15.2 %) and exerted indirect neuroprotection by modulating microglia-derived conditioned medium (CM2 group showed a 2.1-fold increase in neuronal viability compared to CM1).
Conclusion
GCK mitigates AD pathology through dual mechanisms-direct inhibition of Aβ neurotoxicity and indirect regulation of microglial homeostasis-with NF-κB signaling suppression as a core mechanism. This study provides new experimental evidence for natural product-based multi-target AD therapies, though further animal studies are required to validate its in vivo efficacy and safety.