rgo桥接g-C3N4/MoS2间接z型异质结光催化CO2高效转化为CO和CH4

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Navid Khaghani Mohammadi,  and , Shohreh Fatemi*, 
{"title":"rgo桥接g-C3N4/MoS2间接z型异质结光催化CO2高效转化为CO和CH4","authors":"Navid Khaghani Mohammadi,&nbsp; and ,&nbsp;Shohreh Fatemi*,&nbsp;","doi":"10.1021/acs.iecr.5c0039510.1021/acs.iecr.5c00395","DOIUrl":null,"url":null,"abstract":"<p >This study investigates CO<sub>2</sub> photocatalytic conversion using a ternary composite of graphitic carbon nitride (GCN, g-C<sub>3</sub>N<sub>4</sub>), reduced graphene oxide (rGO), and molybdenum disulfide (MoS<sub>2</sub>). GCN was synthesized via thermal polymerization of urea with GO, followed by sonication and mixing to incorporate MoS<sub>2</sub> (0.1–20 wt %). Characterization by XRD, FTIR, BET, FESEM, TEM, PL, photocurrent, DRS, and Mott–Schottky analyses confirmed a successful synthesis with GCN and rGO-GCN-10%MoS<sub>2</sub> bandgaps of 2.88 and 2.68 eV, respectively. DRS, PL, and photocurrent results demonstrated enhanced charge carrier separation, electrical conductivity, and visible light absorption. The optimized rGO-GCN-10%MoS<sub>2</sub> composite exhibited a specific surface area of 125.1 m<sup>2</sup>/g. Under 60 W LED illumination for 5 h, it achieved CO and CH<sub>4</sub> yields of 34.08 and 13.08 μmol/g, representing 18.07-fold and 7.91-fold enhancements over GCN. The improved performance was attributed to synergistic effects, efficient charge separation, and a Z-scheme heterojunction between GCN and MoS<sub>2</sub>, confirmed by band position and product analyses.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 21","pages":"10399–10413 10399–10413"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Photocatalytic CO2 Conversion to CO and CH4 by a rGO-Bridged g-C3N4/MoS2 Indirect Z-Scheme Heterojunction\",\"authors\":\"Navid Khaghani Mohammadi,&nbsp; and ,&nbsp;Shohreh Fatemi*,&nbsp;\",\"doi\":\"10.1021/acs.iecr.5c0039510.1021/acs.iecr.5c00395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates CO<sub>2</sub> photocatalytic conversion using a ternary composite of graphitic carbon nitride (GCN, g-C<sub>3</sub>N<sub>4</sub>), reduced graphene oxide (rGO), and molybdenum disulfide (MoS<sub>2</sub>). GCN was synthesized via thermal polymerization of urea with GO, followed by sonication and mixing to incorporate MoS<sub>2</sub> (0.1–20 wt %). Characterization by XRD, FTIR, BET, FESEM, TEM, PL, photocurrent, DRS, and Mott–Schottky analyses confirmed a successful synthesis with GCN and rGO-GCN-10%MoS<sub>2</sub> bandgaps of 2.88 and 2.68 eV, respectively. DRS, PL, and photocurrent results demonstrated enhanced charge carrier separation, electrical conductivity, and visible light absorption. The optimized rGO-GCN-10%MoS<sub>2</sub> composite exhibited a specific surface area of 125.1 m<sup>2</sup>/g. Under 60 W LED illumination for 5 h, it achieved CO and CH<sub>4</sub> yields of 34.08 and 13.08 μmol/g, representing 18.07-fold and 7.91-fold enhancements over GCN. The improved performance was attributed to synergistic effects, efficient charge separation, and a Z-scheme heterojunction between GCN and MoS<sub>2</sub>, confirmed by band position and product analyses.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 21\",\"pages\":\"10399–10413 10399–10413\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00395\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c00395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用石墨氮化碳(GCN, g-C3N4)、还原氧化石墨烯(rGO)和二硫化钼(MoS2)三元复合材料研究CO2光催化转化。通过尿素与氧化石墨烯热聚合合成GCN,然后超声和混合加入MoS2 (0.1-20 wt %)。通过XRD、FTIR、BET、FESEM、TEM、PL、光电流、DRS和Mott-Schottky分析证实,GCN和rGO-GCN-10%MoS2的带隙分别为2.88和2.68 eV,成功合成。DRS、PL和光电流结果表明,电荷载流子分离、电导率和可见光吸收增强。优化后的rGO-GCN-10%MoS2复合材料的比表面积为125.1 m2/g。在60 W LED光照5 h下,CO和CH4的产率分别为34.08和13.08 μmol/g,分别是GCN的18.07倍和7.91倍。通过能带位置和产物分析,证实了GCN和MoS2之间的z型异质结、高效的电荷分离以及协同效应对性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Photocatalytic CO2 Conversion to CO and CH4 by a rGO-Bridged g-C3N4/MoS2 Indirect Z-Scheme Heterojunction

Efficient Photocatalytic CO2 Conversion to CO and CH4 by a rGO-Bridged g-C3N4/MoS2 Indirect Z-Scheme Heterojunction

This study investigates CO2 photocatalytic conversion using a ternary composite of graphitic carbon nitride (GCN, g-C3N4), reduced graphene oxide (rGO), and molybdenum disulfide (MoS2). GCN was synthesized via thermal polymerization of urea with GO, followed by sonication and mixing to incorporate MoS2 (0.1–20 wt %). Characterization by XRD, FTIR, BET, FESEM, TEM, PL, photocurrent, DRS, and Mott–Schottky analyses confirmed a successful synthesis with GCN and rGO-GCN-10%MoS2 bandgaps of 2.88 and 2.68 eV, respectively. DRS, PL, and photocurrent results demonstrated enhanced charge carrier separation, electrical conductivity, and visible light absorption. The optimized rGO-GCN-10%MoS2 composite exhibited a specific surface area of 125.1 m2/g. Under 60 W LED illumination for 5 h, it achieved CO and CH4 yields of 34.08 and 13.08 μmol/g, representing 18.07-fold and 7.91-fold enhancements over GCN. The improved performance was attributed to synergistic effects, efficient charge separation, and a Z-scheme heterojunction between GCN and MoS2, confirmed by band position and product analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信