协同a位补偿和氧空位工程提高质子陶瓷燃料电池的高熵电解质性能

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaolin Xiang, Junmeng Jing*, Haoran Wang, Xiang Wang, Min Li, Fuli Wang, Jiawei Chen, Yuyang Guo, Linfeng He, Hailei Zhao and Zhibin Yang*, 
{"title":"协同a位补偿和氧空位工程提高质子陶瓷燃料电池的高熵电解质性能","authors":"Xiaolin Xiang,&nbsp;Junmeng Jing*,&nbsp;Haoran Wang,&nbsp;Xiang Wang,&nbsp;Min Li,&nbsp;Fuli Wang,&nbsp;Jiawei Chen,&nbsp;Yuyang Guo,&nbsp;Linfeng He,&nbsp;Hailei Zhao and Zhibin Yang*,&nbsp;","doi":"10.1021/acs.nanolett.5c0033010.1021/acs.nanolett.5c00330","DOIUrl":null,"url":null,"abstract":"<p >Protonic ceramic fuel cells (PCFCs) are clean, highly efficient energy conversion devices with the electrolyte serving as the central component determining their performance and durability. The primary challenge for PCFCs lies in designing proton-conducting electrolytes that are both efficient and stable under extreme environments, such as exposure to moisture and acidic gases (e.g., CO<sub>2</sub> and SO<sub>2</sub>). We developed a high-entropy perovskite oxide (HEPO) Ba<sub>1.05</sub>Ce<sub>0.45</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>Pr<sub>0.10</sub>Gd<sub>0.15</sub>O<sub>3−δ</sub> (Ba<sub>1.05</sub>Ce<sub>0.45</sub>ZYYbPr<sub>0.10</sub>Gd<sub>0.15</sub>) via synergistic A-site stoichiometric compensation and oxygen vacancy engineering, achieving reduced sintering temperatures while suppressing Ba loss. The material exhibited a conductivity of 8.9 mS cm<sup>–1</sup> at 600 °C in wet air (3% H<sub>2</sub>O). Anode-supported single cells with HEPO electrolytes demonstrated an exceptional electrochemical performance of 397 mW cm<sup>–2</sup> at 600 °C, outperforming non-HEPO electrolytes. Electrochemical impedance spectroscopy and stability tests confirm the good chemical stability and phase structure stability of Ba<sub>1.05</sub>Ce<sub>0.45</sub>ZYYbPr<sub>0.10</sub>Gd<sub>0.15</sub> under different atmospheres. These results demonstrate the possibility and feasibility of HEPO electrolyte materials in PCFC.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 21","pages":"8464–8472 8464–8472"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic A-Site Compensation and Oxygen Vacancy Engineering Boost High-Entropy Electrolyte Performance in Protonic Ceramic Fuel Cells\",\"authors\":\"Xiaolin Xiang,&nbsp;Junmeng Jing*,&nbsp;Haoran Wang,&nbsp;Xiang Wang,&nbsp;Min Li,&nbsp;Fuli Wang,&nbsp;Jiawei Chen,&nbsp;Yuyang Guo,&nbsp;Linfeng He,&nbsp;Hailei Zhao and Zhibin Yang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0033010.1021/acs.nanolett.5c00330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Protonic ceramic fuel cells (PCFCs) are clean, highly efficient energy conversion devices with the electrolyte serving as the central component determining their performance and durability. The primary challenge for PCFCs lies in designing proton-conducting electrolytes that are both efficient and stable under extreme environments, such as exposure to moisture and acidic gases (e.g., CO<sub>2</sub> and SO<sub>2</sub>). We developed a high-entropy perovskite oxide (HEPO) Ba<sub>1.05</sub>Ce<sub>0.45</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>Pr<sub>0.10</sub>Gd<sub>0.15</sub>O<sub>3−δ</sub> (Ba<sub>1.05</sub>Ce<sub>0.45</sub>ZYYbPr<sub>0.10</sub>Gd<sub>0.15</sub>) via synergistic A-site stoichiometric compensation and oxygen vacancy engineering, achieving reduced sintering temperatures while suppressing Ba loss. The material exhibited a conductivity of 8.9 mS cm<sup>–1</sup> at 600 °C in wet air (3% H<sub>2</sub>O). Anode-supported single cells with HEPO electrolytes demonstrated an exceptional electrochemical performance of 397 mW cm<sup>–2</sup> at 600 °C, outperforming non-HEPO electrolytes. Electrochemical impedance spectroscopy and stability tests confirm the good chemical stability and phase structure stability of Ba<sub>1.05</sub>Ce<sub>0.45</sub>ZYYbPr<sub>0.10</sub>Gd<sub>0.15</sub> under different atmospheres. These results demonstrate the possibility and feasibility of HEPO electrolyte materials in PCFC.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 21\",\"pages\":\"8464–8472 8464–8472\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00330\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00330","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子陶瓷燃料电池(pcfc)是一种清洁、高效的能量转换装置,电解质是决定其性能和耐用性的核心成分。pcfc的主要挑战在于设计在极端环境下既高效又稳定的质子导电电解质,例如暴露于潮湿和酸性气体(例如CO2和SO2)。通过协同a位化学补偿和氧空位工程,制备了一种高熵钙钛矿氧化物(HEPO) Ba1.05Ce0.45Zr0.1Y0.1Yb0.1Pr0.10Gd0.15O3−δ (Ba1.05Ce0.45ZYYbPr0.10Gd0.15),在降低烧结温度的同时抑制了Ba的损失。该材料在600°C湿空气(3% H2O)中的电导率为8.9 mS cm-1。使用HEPO电解质的阳极支撑单体电池在600°C时的电化学性能为397 mW cm-2,优于非HEPO电解质。电化学阻抗谱和稳定性测试证实了Ba1.05Ce0.45ZYYbPr0.10Gd0.15在不同气氛下具有良好的化学稳定性和相结构稳定性。这些结果证明了HEPO电解质材料应用于PCFC的可能性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic A-Site Compensation and Oxygen Vacancy Engineering Boost High-Entropy Electrolyte Performance in Protonic Ceramic Fuel Cells

Synergistic A-Site Compensation and Oxygen Vacancy Engineering Boost High-Entropy Electrolyte Performance in Protonic Ceramic Fuel Cells

Protonic ceramic fuel cells (PCFCs) are clean, highly efficient energy conversion devices with the electrolyte serving as the central component determining their performance and durability. The primary challenge for PCFCs lies in designing proton-conducting electrolytes that are both efficient and stable under extreme environments, such as exposure to moisture and acidic gases (e.g., CO2 and SO2). We developed a high-entropy perovskite oxide (HEPO) Ba1.05Ce0.45Zr0.1Y0.1Yb0.1Pr0.10Gd0.15O3−δ (Ba1.05Ce0.45ZYYbPr0.10Gd0.15) via synergistic A-site stoichiometric compensation and oxygen vacancy engineering, achieving reduced sintering temperatures while suppressing Ba loss. The material exhibited a conductivity of 8.9 mS cm–1 at 600 °C in wet air (3% H2O). Anode-supported single cells with HEPO electrolytes demonstrated an exceptional electrochemical performance of 397 mW cm–2 at 600 °C, outperforming non-HEPO electrolytes. Electrochemical impedance spectroscopy and stability tests confirm the good chemical stability and phase structure stability of Ba1.05Ce0.45ZYYbPr0.10Gd0.15 under different atmospheres. These results demonstrate the possibility and feasibility of HEPO electrolyte materials in PCFC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信