使用双能x线吸收仪预测猪里脊排的总脂肪和肌内脂肪

IF 6.1 1区 农林科学 Q1 Agricultural and Biological Sciences
Isabela Oliveira Frank, Jenifer Maira Lima Ramos, Cris Luana de Castro Nunes, Pâmela Gracioli Vilas Boas, Rizielly Saraiva Reis Vilela, Erica Beatriz Schultz, Melissa Izabel Hannas, Mario Luiz Chizzotti, Cristina Mattos Veloso
{"title":"使用双能x线吸收仪预测猪里脊排的总脂肪和肌内脂肪","authors":"Isabela Oliveira Frank,&nbsp;Jenifer Maira Lima Ramos,&nbsp;Cris Luana de Castro Nunes,&nbsp;Pâmela Gracioli Vilas Boas,&nbsp;Rizielly Saraiva Reis Vilela,&nbsp;Erica Beatriz Schultz,&nbsp;Melissa Izabel Hannas,&nbsp;Mario Luiz Chizzotti,&nbsp;Cristina Mattos Veloso","doi":"10.1016/j.meatsci.2025.109867","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated the efficacy of dual-energy X-ray absorptiometry (DXA) in determining total fat and intramuscular fat (IMF) in pork chops, using chemical analysis as the gold-standard reference, in samples with and without subcutaneous fat (SF). Across all samples, DXA fat percentage showed a strong correlation with chemically determined fat content (<em>r</em> = 0.91). However, when samples with and without SF were analyzed separately, the correlations weakened, with a moderate correlation observed for total fat in chops with SF (<em>r</em> = 0.69) and a weak correlation between DXA fat percentage and IMF in samples without SF (<em>r</em> = 0.23). The regression model for predicting total fat content from DXA fat percentage exhibited the highest predictive performance when applied to pooled data (R<sup>2</sup> = 0.83, RMSECV = 3.22 %, slope = 0.97, bias = 7.55 %). In contrast, the model for IMF prediction demonstrated poor predictive capability (R<sup>2</sup> = 0.05, RMSECV = 0.89 %, slope = 0.14, bias = 7.61 %). These findings suggest that while DXA is effective for estimating total fat content in pork chops, its ability to accurately predict IMF is limited. Further calibration and model refinement are necessary to enhance DXA's reliability for IMF quantification in pork chops.</div></div>","PeriodicalId":389,"journal":{"name":"Meat Science","volume":"227 ","pages":"Article 109867"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of dual-energy X-ray absorptiometry for predicting total and intramuscular fat in pork loin chops\",\"authors\":\"Isabela Oliveira Frank,&nbsp;Jenifer Maira Lima Ramos,&nbsp;Cris Luana de Castro Nunes,&nbsp;Pâmela Gracioli Vilas Boas,&nbsp;Rizielly Saraiva Reis Vilela,&nbsp;Erica Beatriz Schultz,&nbsp;Melissa Izabel Hannas,&nbsp;Mario Luiz Chizzotti,&nbsp;Cristina Mattos Veloso\",\"doi\":\"10.1016/j.meatsci.2025.109867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluated the efficacy of dual-energy X-ray absorptiometry (DXA) in determining total fat and intramuscular fat (IMF) in pork chops, using chemical analysis as the gold-standard reference, in samples with and without subcutaneous fat (SF). Across all samples, DXA fat percentage showed a strong correlation with chemically determined fat content (<em>r</em> = 0.91). However, when samples with and without SF were analyzed separately, the correlations weakened, with a moderate correlation observed for total fat in chops with SF (<em>r</em> = 0.69) and a weak correlation between DXA fat percentage and IMF in samples without SF (<em>r</em> = 0.23). The regression model for predicting total fat content from DXA fat percentage exhibited the highest predictive performance when applied to pooled data (R<sup>2</sup> = 0.83, RMSECV = 3.22 %, slope = 0.97, bias = 7.55 %). In contrast, the model for IMF prediction demonstrated poor predictive capability (R<sup>2</sup> = 0.05, RMSECV = 0.89 %, slope = 0.14, bias = 7.61 %). These findings suggest that while DXA is effective for estimating total fat content in pork chops, its ability to accurately predict IMF is limited. Further calibration and model refinement are necessary to enhance DXA's reliability for IMF quantification in pork chops.</div></div>\",\"PeriodicalId\":389,\"journal\":{\"name\":\"Meat Science\",\"volume\":\"227 \",\"pages\":\"Article 109867\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meat Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309174025001287\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309174025001287","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究评价了双能x线吸收法(DXA)测定猪排中总脂肪和肌内脂肪(IMF)的有效性,以化学分析为金标准参比,在有和没有皮下脂肪(SF)的样品中。在所有样品中,DXA脂肪百分比与化学测定的脂肪含量有很强的相关性(r = 0.91)。然而,当单独分析有和没有SF的样品时,相关性减弱,有SF的样品中总脂肪与IMF的相关性中等(r = 0.69),而没有SF的样品中DXA脂肪百分比与IMF的相关性较弱(r = 0.23)。从DXA脂肪百分比预测总脂肪含量的回归模型应用于合并数据时表现出最高的预测性能(R2 = 0.83, RMSECV = 3.22%,斜率= 0.97,偏差= 7.55%)。相比之下,IMF预测模型的预测能力较差(R2 = 0.05, RMSECV = 0.89%,斜率= 0.14,偏差= 7.61%)。这些发现表明,虽然DXA对估算猪排中的总脂肪含量有效,但其准确预测IMF的能力有限。为了提高DXA对猪排中IMF定量的可靠性,需要进一步的校准和模型改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of dual-energy X-ray absorptiometry for predicting total and intramuscular fat in pork loin chops
This study evaluated the efficacy of dual-energy X-ray absorptiometry (DXA) in determining total fat and intramuscular fat (IMF) in pork chops, using chemical analysis as the gold-standard reference, in samples with and without subcutaneous fat (SF). Across all samples, DXA fat percentage showed a strong correlation with chemically determined fat content (r = 0.91). However, when samples with and without SF were analyzed separately, the correlations weakened, with a moderate correlation observed for total fat in chops with SF (r = 0.69) and a weak correlation between DXA fat percentage and IMF in samples without SF (r = 0.23). The regression model for predicting total fat content from DXA fat percentage exhibited the highest predictive performance when applied to pooled data (R2 = 0.83, RMSECV = 3.22 %, slope = 0.97, bias = 7.55 %). In contrast, the model for IMF prediction demonstrated poor predictive capability (R2 = 0.05, RMSECV = 0.89 %, slope = 0.14, bias = 7.61 %). These findings suggest that while DXA is effective for estimating total fat content in pork chops, its ability to accurately predict IMF is limited. Further calibration and model refinement are necessary to enhance DXA's reliability for IMF quantification in pork chops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meat Science
Meat Science 工程技术-食品科技
CiteScore
12.60
自引率
9.90%
发文量
282
审稿时长
60 days
期刊介绍: The aim of Meat Science is to serve as a suitable platform for the dissemination of interdisciplinary and international knowledge on all factors influencing the properties of meat. While the journal primarily focuses on the flesh of mammals, contributions related to poultry will be considered if they enhance the overall understanding of the relationship between muscle nature and meat quality post mortem. Additionally, papers on large birds (e.g., emus, ostriches) as well as wild-captured mammals and crocodiles will be welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信