Benjamin C. Jean, Yi Ren, Ian Slagle, Ryan P. Lively, Faisal M. Alamgir, Mark D. Losego
{"title":"通过水合作用修饰气相渗透AlOxHy-PIM-1杂化膜的无机结构:对溶剂稳定性、渗透性和选择性的影响","authors":"Benjamin C. Jean, Yi Ren, Ian Slagle, Ryan P. Lively, Faisal M. Alamgir, Mark D. Losego","doi":"10.1021/acs.chemmater.4c03453","DOIUrl":null,"url":null,"abstract":"Vapor-phase infiltration (VPI) presents a promising approach to enhancing the stability of organic membranes in organic solvents while maintaining critical properties, such as membrane permeance and selectivity. However, the precise chemical structure of the infiltrated inorganics and their impact on solvent stability remain poorly understood, limiting efforts to improve VPI treated hybrid membrane technology for organic solvent reverse osmosis (OSRO). This study uses X-ray absorption spectroscopy alongside X-ray photoelectron spectroscopy (XPS) to elucidate the inorganic cluster structure within PIM-1/AlO<sub><i>x</i></sub>H<sub><i>y</i></sub>. By analyzing the H<sub>2</sub>O ratio via XPS and assessing the first and second shell Al coordination numbers from Al K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we propose that aluminum oxyhydroxide tends to form nonlinear networked structures. X-ray absorption near-edge spectroscopy (XANES) analysis confirms a predominantly six-coordinate structure in the first shell, while EXAFS analysis of the second shell reveals the presence of three aluminum atoms, suggesting clusters significantly larger than simple dimers or trimers, similar to larger aluminum hydroxide and oxyhydroxide crystal structures. Furthermore, we demonstrate that postprocessing techniques, such as dehydration and rehydration, can be utilized to control this network structure and membrane permeance and selectivity without compromising solvent stability.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"17 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modifying Inorganic Structure through Hydration in Vapor Phase Infiltrated AlOxHy-PIM-1 Hybrid Membranes: Implications for Solvent Stability, Permeance, and Selectivity\",\"authors\":\"Benjamin C. Jean, Yi Ren, Ian Slagle, Ryan P. Lively, Faisal M. Alamgir, Mark D. Losego\",\"doi\":\"10.1021/acs.chemmater.4c03453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vapor-phase infiltration (VPI) presents a promising approach to enhancing the stability of organic membranes in organic solvents while maintaining critical properties, such as membrane permeance and selectivity. However, the precise chemical structure of the infiltrated inorganics and their impact on solvent stability remain poorly understood, limiting efforts to improve VPI treated hybrid membrane technology for organic solvent reverse osmosis (OSRO). This study uses X-ray absorption spectroscopy alongside X-ray photoelectron spectroscopy (XPS) to elucidate the inorganic cluster structure within PIM-1/AlO<sub><i>x</i></sub>H<sub><i>y</i></sub>. By analyzing the H<sub>2</sub>O ratio via XPS and assessing the first and second shell Al coordination numbers from Al K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we propose that aluminum oxyhydroxide tends to form nonlinear networked structures. X-ray absorption near-edge spectroscopy (XANES) analysis confirms a predominantly six-coordinate structure in the first shell, while EXAFS analysis of the second shell reveals the presence of three aluminum atoms, suggesting clusters significantly larger than simple dimers or trimers, similar to larger aluminum hydroxide and oxyhydroxide crystal structures. Furthermore, we demonstrate that postprocessing techniques, such as dehydration and rehydration, can be utilized to control this network structure and membrane permeance and selectivity without compromising solvent stability.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c03453\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c03453","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modifying Inorganic Structure through Hydration in Vapor Phase Infiltrated AlOxHy-PIM-1 Hybrid Membranes: Implications for Solvent Stability, Permeance, and Selectivity
Vapor-phase infiltration (VPI) presents a promising approach to enhancing the stability of organic membranes in organic solvents while maintaining critical properties, such as membrane permeance and selectivity. However, the precise chemical structure of the infiltrated inorganics and their impact on solvent stability remain poorly understood, limiting efforts to improve VPI treated hybrid membrane technology for organic solvent reverse osmosis (OSRO). This study uses X-ray absorption spectroscopy alongside X-ray photoelectron spectroscopy (XPS) to elucidate the inorganic cluster structure within PIM-1/AlOxHy. By analyzing the H2O ratio via XPS and assessing the first and second shell Al coordination numbers from Al K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we propose that aluminum oxyhydroxide tends to form nonlinear networked structures. X-ray absorption near-edge spectroscopy (XANES) analysis confirms a predominantly six-coordinate structure in the first shell, while EXAFS analysis of the second shell reveals the presence of three aluminum atoms, suggesting clusters significantly larger than simple dimers or trimers, similar to larger aluminum hydroxide and oxyhydroxide crystal structures. Furthermore, we demonstrate that postprocessing techniques, such as dehydration and rehydration, can be utilized to control this network structure and membrane permeance and selectivity without compromising solvent stability.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.