基于激光工程的超湿自杀菌Cu/CuZn-ZnO光栅用于先进的液滴传感。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-27 DOI:10.1002/smll.202502976
Yexin Pan,Xupeng Lu,Ruohan Yu,Le Jing,Yang Xu,Wing Yan Poon,Haosong Zhong,Siyu Chen,Molong Duan,Yang Liu,Mitch Guijun Li
{"title":"基于激光工程的超湿自杀菌Cu/CuZn-ZnO光栅用于先进的液滴传感。","authors":"Yexin Pan,Xupeng Lu,Ruohan Yu,Le Jing,Yang Xu,Wing Yan Poon,Haosong Zhong,Siyu Chen,Molong Duan,Yang Liu,Mitch Guijun Li","doi":"10.1002/smll.202502976","DOIUrl":null,"url":null,"abstract":"Controlling metal properties is essential for achieving functional applications, as metals show extreme tunability on surface energies, structural surface areas, and sterilization ability. Existing materials for respiratory droplet detection, critical for controlling infectious disease spread, often lack combined extreme wettability and intrinsic antimicrobial activity. Inspired by the photonic crystals of peacock feathers, a highly sensitive and self-sterilizing optical grating sensor is developed based on a core-shell nanostructured copper/copper-zinc and zinc oxide (Cu/CuZn-ZnO) composite (interconnected Cu or CuZn nanoparticles encapsulated by ZnO). A two-step laser-induced process controls the composite's properties, creating hierarchical, core-shell nanostructures and simultaneously tailoring surface energy and morphology for superhydrophilicity. This laser-engineered superwetting surface, combining increased surface area and low surface energy, amplifies aqueous droplet footprint diameter over fivefold, enabling picoliter-range electrical detection. The amounts and distribution of droplets can be analyzed using point-to-point optical Fourier translation analysis and classical statistics. The laser-generated ZnO and residual copper species provide inherent antimicrobial properties, achieving effective self-disinfection. This integrated superhydrophilicity and self-disinfection platform offers significant potential for advanced respiratory droplet analysis and public health monitoring.","PeriodicalId":228,"journal":{"name":"Small","volume":"33 1","pages":"e2502976"},"PeriodicalIF":13.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superwetting, Self-Sterilizing Cu/CuZn-ZnO Grating via Laser Engineering for Advanced Droplet Sensing.\",\"authors\":\"Yexin Pan,Xupeng Lu,Ruohan Yu,Le Jing,Yang Xu,Wing Yan Poon,Haosong Zhong,Siyu Chen,Molong Duan,Yang Liu,Mitch Guijun Li\",\"doi\":\"10.1002/smll.202502976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling metal properties is essential for achieving functional applications, as metals show extreme tunability on surface energies, structural surface areas, and sterilization ability. Existing materials for respiratory droplet detection, critical for controlling infectious disease spread, often lack combined extreme wettability and intrinsic antimicrobial activity. Inspired by the photonic crystals of peacock feathers, a highly sensitive and self-sterilizing optical grating sensor is developed based on a core-shell nanostructured copper/copper-zinc and zinc oxide (Cu/CuZn-ZnO) composite (interconnected Cu or CuZn nanoparticles encapsulated by ZnO). A two-step laser-induced process controls the composite's properties, creating hierarchical, core-shell nanostructures and simultaneously tailoring surface energy and morphology for superhydrophilicity. This laser-engineered superwetting surface, combining increased surface area and low surface energy, amplifies aqueous droplet footprint diameter over fivefold, enabling picoliter-range electrical detection. The amounts and distribution of droplets can be analyzed using point-to-point optical Fourier translation analysis and classical statistics. The laser-generated ZnO and residual copper species provide inherent antimicrobial properties, achieving effective self-disinfection. This integrated superhydrophilicity and self-disinfection platform offers significant potential for advanced respiratory droplet analysis and public health monitoring.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"33 1\",\"pages\":\"e2502976\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202502976\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502976","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于金属在表面能、结构表面积和杀菌能力上表现出极大的可调性,因此控制金属性能对于实现功能应用至关重要。现有的呼吸道液滴检测材料对控制传染病传播至关重要,但往往缺乏极端的润湿性和固有的抗菌活性。受孔雀羽毛光子晶体的启发,基于核壳纳米结构铜/铜锌和氧化锌(Cu/CuZn-ZnO)复合材料(被ZnO包裹的互连Cu或CuZn纳米颗粒),开发了一种高灵敏度、自消能的光栅传感器。两步激光诱导过程控制复合材料的性质,创建分层的核壳纳米结构,同时调整表面能和超亲水性的形态。这种激光设计的超润湿表面,结合了增加的表面积和低表面能,将液滴足迹直径放大了五倍以上,实现了皮升范围的电检测。液滴的数量和分布可以用点对点光学傅立叶平移分析和经典统计来分析。激光产生的氧化锌和残留的铜提供了固有的抗菌特性,实现了有效的自消毒。这种综合的超亲水性和自消毒平台为先进的呼吸道液滴分析和公共卫生监测提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superwetting, Self-Sterilizing Cu/CuZn-ZnO Grating via Laser Engineering for Advanced Droplet Sensing.
Controlling metal properties is essential for achieving functional applications, as metals show extreme tunability on surface energies, structural surface areas, and sterilization ability. Existing materials for respiratory droplet detection, critical for controlling infectious disease spread, often lack combined extreme wettability and intrinsic antimicrobial activity. Inspired by the photonic crystals of peacock feathers, a highly sensitive and self-sterilizing optical grating sensor is developed based on a core-shell nanostructured copper/copper-zinc and zinc oxide (Cu/CuZn-ZnO) composite (interconnected Cu or CuZn nanoparticles encapsulated by ZnO). A two-step laser-induced process controls the composite's properties, creating hierarchical, core-shell nanostructures and simultaneously tailoring surface energy and morphology for superhydrophilicity. This laser-engineered superwetting surface, combining increased surface area and low surface energy, amplifies aqueous droplet footprint diameter over fivefold, enabling picoliter-range electrical detection. The amounts and distribution of droplets can be analyzed using point-to-point optical Fourier translation analysis and classical statistics. The laser-generated ZnO and residual copper species provide inherent antimicrobial properties, achieving effective self-disinfection. This integrated superhydrophilicity and self-disinfection platform offers significant potential for advanced respiratory droplet analysis and public health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信