{"title":"利用空间反演对称破缺实现具有各向异性自旋电流的丰富二维交替磁体。","authors":"Chao Liu,Xiangyang Li,Xingxing Li,Jinlong Yang","doi":"10.1021/acs.nanolett.5c00198","DOIUrl":null,"url":null,"abstract":"Altermagnets exhibit nonrelativistic spin splitting with net-zero magnetic moments, making them advantageous for spintronic devices with miniaturized size and high integration. Developing general methods to design altermagnets, particularly in a low dimension, is highly desirable. Here, we propose that breaking the spatial inversion symmetry of crystals can produce altermagnetism in antiferromagnetic monolayers. By applying Janus structurization to two-dimensional (2D) FeSe-type monolayers, 41 polar altermagnets were successfully identified through first-principles calculations, confirming the feasibility of our proposed approach. Furthermore, via systematic screening, we obtained 29 altermagnets with significant spin splitting (>0.5 eV) and high Néel temperatures (above liquid nitrogen temperature). Moreover, using 2D Mn2PSe as an example, we revealed the mechanism of how polarity drives the transformation of antiferromagnets into altermagnets and demonstrated its anisotropic spin current generation and notable spin Hall effect. This work paves a way for realizing high-performance and multifunctional nanoaltermagnets.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"35 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing Abundant Two-Dimensional Altermagnets with Anisotropic Spin Current Via Spatial Inversion Symmetry Breaking.\",\"authors\":\"Chao Liu,Xiangyang Li,Xingxing Li,Jinlong Yang\",\"doi\":\"10.1021/acs.nanolett.5c00198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Altermagnets exhibit nonrelativistic spin splitting with net-zero magnetic moments, making them advantageous for spintronic devices with miniaturized size and high integration. Developing general methods to design altermagnets, particularly in a low dimension, is highly desirable. Here, we propose that breaking the spatial inversion symmetry of crystals can produce altermagnetism in antiferromagnetic monolayers. By applying Janus structurization to two-dimensional (2D) FeSe-type monolayers, 41 polar altermagnets were successfully identified through first-principles calculations, confirming the feasibility of our proposed approach. Furthermore, via systematic screening, we obtained 29 altermagnets with significant spin splitting (>0.5 eV) and high Néel temperatures (above liquid nitrogen temperature). Moreover, using 2D Mn2PSe as an example, we revealed the mechanism of how polarity drives the transformation of antiferromagnets into altermagnets and demonstrated its anisotropic spin current generation and notable spin Hall effect. This work paves a way for realizing high-performance and multifunctional nanoaltermagnets.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00198\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00198","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Realizing Abundant Two-Dimensional Altermagnets with Anisotropic Spin Current Via Spatial Inversion Symmetry Breaking.
Altermagnets exhibit nonrelativistic spin splitting with net-zero magnetic moments, making them advantageous for spintronic devices with miniaturized size and high integration. Developing general methods to design altermagnets, particularly in a low dimension, is highly desirable. Here, we propose that breaking the spatial inversion symmetry of crystals can produce altermagnetism in antiferromagnetic monolayers. By applying Janus structurization to two-dimensional (2D) FeSe-type monolayers, 41 polar altermagnets were successfully identified through first-principles calculations, confirming the feasibility of our proposed approach. Furthermore, via systematic screening, we obtained 29 altermagnets with significant spin splitting (>0.5 eV) and high Néel temperatures (above liquid nitrogen temperature). Moreover, using 2D Mn2PSe as an example, we revealed the mechanism of how polarity drives the transformation of antiferromagnets into altermagnets and demonstrated its anisotropic spin current generation and notable spin Hall effect. This work paves a way for realizing high-performance and multifunctional nanoaltermagnets.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.