通过激光定义高宽高比印刷的微型化柔软和可拉伸多层电路。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-27 DOI:10.1002/smll.202501175
Mohsen Mohammadi,Jin Shang,Yuyang Li,Aiman Rahmanudin,Darius Jakonis,Magnus Berggren,Lars Herlogsson,Klas Tybrandt
{"title":"通过激光定义高宽高比印刷的微型化柔软和可拉伸多层电路。","authors":"Mohsen Mohammadi,Jin Shang,Yuyang Li,Aiman Rahmanudin,Darius Jakonis,Magnus Berggren,Lars Herlogsson,Klas Tybrandt","doi":"10.1002/smll.202501175","DOIUrl":null,"url":null,"abstract":"Stretchable electronics enable seamless integration of wearables with the human body, thereby creating new opportunities in biomedical applications. Miniaturized multilayer stretchable printed circuit boards are key for achieving high functional density circuits with minimal footprint. However, current microfabrication technologies struggle with simultaneously achieving tissue-like softness (<<1 MPa), high resolution and low sheet resistance. This study demonstrates a scalable printing method that enables ultra-soft (<0.4 MPa) stretchable conductors (>300% strain) with high-resolution (<2.5 µm width) and high aspect-ratio tracks (>1) connected by ultra-fine (20 µm) vertical-interconnect-access (VIA) for multi-layered configurations. The method is based on stencil printing into laser-defined bio-masks comprising the abundant biopolymer lignin, thereby achieving printing capabilities beyond conventional methods in a sustainable manner. Based on the unique capabilities, a miniaturized multilayer ultra-soft wireless near-field-communication temperature logger is developed. Laser-defined printing can pave the way for the next generation of ultra-soft miniaturized wearables.","PeriodicalId":228,"journal":{"name":"Small","volume":"49 1","pages":"e2501175"},"PeriodicalIF":13.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized Soft and Stretchable Multilayer Circuits through Laser-Defined High Aspect-Ratio Printing.\",\"authors\":\"Mohsen Mohammadi,Jin Shang,Yuyang Li,Aiman Rahmanudin,Darius Jakonis,Magnus Berggren,Lars Herlogsson,Klas Tybrandt\",\"doi\":\"10.1002/smll.202501175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stretchable electronics enable seamless integration of wearables with the human body, thereby creating new opportunities in biomedical applications. Miniaturized multilayer stretchable printed circuit boards are key for achieving high functional density circuits with minimal footprint. However, current microfabrication technologies struggle with simultaneously achieving tissue-like softness (<<1 MPa), high resolution and low sheet resistance. This study demonstrates a scalable printing method that enables ultra-soft (<0.4 MPa) stretchable conductors (>300% strain) with high-resolution (<2.5 µm width) and high aspect-ratio tracks (>1) connected by ultra-fine (20 µm) vertical-interconnect-access (VIA) for multi-layered configurations. The method is based on stencil printing into laser-defined bio-masks comprising the abundant biopolymer lignin, thereby achieving printing capabilities beyond conventional methods in a sustainable manner. Based on the unique capabilities, a miniaturized multilayer ultra-soft wireless near-field-communication temperature logger is developed. Laser-defined printing can pave the way for the next generation of ultra-soft miniaturized wearables.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"49 1\",\"pages\":\"e2501175\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501175\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501175","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可伸缩电子设备使可穿戴设备与人体无缝集成,从而在生物医学应用中创造新的机会。小型化多层可拉伸印刷电路板是实现高功能密度电路的关键。然而,目前的微制造技术很难同时实现类似组织的柔软度(300%应变)和高分辨率(1),通过超细(20微米)垂直互连接入(VIA)连接多层结构。该方法基于模板打印到激光定义的生物掩模中,包含丰富的生物聚合物木质素,从而以可持续的方式实现超越传统方法的打印能力。基于其独特的性能,研制了一种小型化的多层超软无线近场通信温度记录仪。激光定义打印可以为下一代超软小型化可穿戴设备铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miniaturized Soft and Stretchable Multilayer Circuits through Laser-Defined High Aspect-Ratio Printing.
Stretchable electronics enable seamless integration of wearables with the human body, thereby creating new opportunities in biomedical applications. Miniaturized multilayer stretchable printed circuit boards are key for achieving high functional density circuits with minimal footprint. However, current microfabrication technologies struggle with simultaneously achieving tissue-like softness (<<1 MPa), high resolution and low sheet resistance. This study demonstrates a scalable printing method that enables ultra-soft (<0.4 MPa) stretchable conductors (>300% strain) with high-resolution (<2.5 µm width) and high aspect-ratio tracks (>1) connected by ultra-fine (20 µm) vertical-interconnect-access (VIA) for multi-layered configurations. The method is based on stencil printing into laser-defined bio-masks comprising the abundant biopolymer lignin, thereby achieving printing capabilities beyond conventional methods in a sustainable manner. Based on the unique capabilities, a miniaturized multilayer ultra-soft wireless near-field-communication temperature logger is developed. Laser-defined printing can pave the way for the next generation of ultra-soft miniaturized wearables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信