半直积的指数函数的奇异性

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Alexandru Chirvasitu, Rafael Dahmen, Karl–Hermann Neeb and Alexander Schmeding
{"title":"半直积的指数函数的奇异性","authors":"Alexandru Chirvasitu, Rafael Dahmen, Karl–Hermann Neeb and Alexander Schmeding","doi":"10.1088/1361-6382/add786","DOIUrl":null,"url":null,"abstract":"We show that the Fréchet–Lie groups of the form resulting from smooth flows on compact manifolds M fail to be locally exponential in several cases: when at least one non-periodic orbit is locally closed, or when the flow restricts to a linear one on an orbit closure diffeomorphic to a torus. As an application, we prove that the Bondi–Metzner–Sachs group of symmetries of an asymptotically flat spacetime is not locally exponential.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"35 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the singularities of the exponential function of a semidirect product\",\"authors\":\"Alexandru Chirvasitu, Rafael Dahmen, Karl–Hermann Neeb and Alexander Schmeding\",\"doi\":\"10.1088/1361-6382/add786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Fréchet–Lie groups of the form resulting from smooth flows on compact manifolds M fail to be locally exponential in several cases: when at least one non-periodic orbit is locally closed, or when the flow restricts to a linear one on an orbit closure diffeomorphic to a torus. As an application, we prove that the Bondi–Metzner–Sachs group of symmetries of an asymptotically flat spacetime is not locally exponential.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/add786\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/add786","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了紧流形M上光滑流动的fr切-李群在以下几种情况下不是局部指数型的:当至少有一个非周期轨道是局部闭合的,或者当流动限制在一个环面微分同构的轨道闭包上的线性轨道时。作为一个应用,我们证明了一个渐近平坦时空的Bondi-Metzner-Sachs对称群不是局部指数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the singularities of the exponential function of a semidirect product
We show that the Fréchet–Lie groups of the form resulting from smooth flows on compact manifolds M fail to be locally exponential in several cases: when at least one non-periodic orbit is locally closed, or when the flow restricts to a linear one on an orbit closure diffeomorphic to a torus. As an application, we prove that the Bondi–Metzner–Sachs group of symmetries of an asymptotically flat spacetime is not locally exponential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信