向无限空间缓慢衰减的布里尔波

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Lydia Bieri, David Garfinkle and James Wheeler
{"title":"向无限空间缓慢衰减的布里尔波","authors":"Lydia Bieri, David Garfinkle and James Wheeler","doi":"10.1088/1361-6382/add5b7","DOIUrl":null,"url":null,"abstract":"We compute families of solutions to the Einstein vacuum equations of the type of Brill waves, but with slow fall-off towards spatial infinity. We prove existence and uniqueness of solutions for physical data and numerically construct some representative solutions. We numerically construct an explicit example with slow-off which does not exhibit antipodal symmetry at spatial infinity.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"27 1","pages":"115011"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brill waves with slow fall-off towards spatial infinity\",\"authors\":\"Lydia Bieri, David Garfinkle and James Wheeler\",\"doi\":\"10.1088/1361-6382/add5b7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute families of solutions to the Einstein vacuum equations of the type of Brill waves, but with slow fall-off towards spatial infinity. We prove existence and uniqueness of solutions for physical data and numerically construct some representative solutions. We numerically construct an explicit example with slow-off which does not exhibit antipodal symmetry at spatial infinity.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"27 1\",\"pages\":\"115011\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/add5b7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/add5b7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了布里尔波类型的爱因斯坦真空方程的解族,但具有向空间无穷远的缓慢衰减。我们证明了物理数据解的存在唯一性,并用数值方法构造了一些有代表性的解。我们用数值方法构造了一个在空间无穷远处不表现对映对称性的显式慢化例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brill waves with slow fall-off towards spatial infinity
We compute families of solutions to the Einstein vacuum equations of the type of Brill waves, but with slow fall-off towards spatial infinity. We prove existence and uniqueness of solutions for physical data and numerically construct some representative solutions. We numerically construct an explicit example with slow-off which does not exhibit antipodal symmetry at spatial infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信