全尖晶石Fe3O4/MgCr2O4/Fe3O4外延异质结构的界面磁性研究

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-05-27 DOI:10.1039/d5nr00971e
Francesco Offi, FRANCESCO BORGATTI, Pasquale Orgiani, Vincent Polewczyk, Sandeep Kumar Chaluvadi, Shyni Punathum Chalil, Aleksandr Petrov, Federico Motti, Gian Marco Pierantozzi, Giancarlo Panaccione, Bogdan Rutkowski, Paolo Mengucci, Gianni Barucca, Deepnarayan Biswas, Tien-Lin Lee, Emiliano Marchetti, Alberto Martinelli, Davide Peddis, Gaspare Varvaro
{"title":"全尖晶石Fe3O4/MgCr2O4/Fe3O4外延异质结构的界面磁性研究","authors":"Francesco Offi, FRANCESCO BORGATTI, Pasquale Orgiani, Vincent Polewczyk, Sandeep Kumar Chaluvadi, Shyni Punathum Chalil, Aleksandr Petrov, Federico Motti, Gian Marco Pierantozzi, Giancarlo Panaccione, Bogdan Rutkowski, Paolo Mengucci, Gianni Barucca, Deepnarayan Biswas, Tien-Lin Lee, Emiliano Marchetti, Alberto Martinelli, Davide Peddis, Gaspare Varvaro","doi":"10.1039/d5nr00971e","DOIUrl":null,"url":null,"abstract":"Epitaxial heterostructures integrating thin Fe3O4 films hold great potential for spintronics, magnetoionics, and multifunctional device development. In this work, the morpho-structural and magnetic properties of all-spinel Fe3O4/MgCr2O4/Fe3O4 trilayers grown on a MgCr2O4 buffer-layer, exhibiting very close lattice matching, were investigated by using both surface and bulk sensitive techniques. The close lattice match between Fe3O4 and MgCr2O4 enables the growth of epitaxial heterostructures with magnetically decoupled Fe3O4 layers for spacer thicknesses ≥ 1.6 nm, while reducing the formation of antiphase boundaries. Despite localized interphase diffusion, which leads to the formation of a mixed Cr/Fe spinel oxide with magnetically polarized Cr ions at the Fe3O4/MgCr2O4 interfaces, the overall magnetic properties remain largely consistent with those of the individual Fe3O4 layers. This study sheds light on the magnetic interactions within Fe3O4 layers mediated by a MgCr2O4 spacer, and demonstrates the feasibility of the approach in preserving the properties of thin Fe3O4 films, in complex heterostructures, thus offering a promising pathway for designing advanced all-spinel oxide devices.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"132 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Interfacial Magnetism in All-Spinel Fe3O4/MgCr2O4/Fe3O4 Epitaxial Heterostructures\",\"authors\":\"Francesco Offi, FRANCESCO BORGATTI, Pasquale Orgiani, Vincent Polewczyk, Sandeep Kumar Chaluvadi, Shyni Punathum Chalil, Aleksandr Petrov, Federico Motti, Gian Marco Pierantozzi, Giancarlo Panaccione, Bogdan Rutkowski, Paolo Mengucci, Gianni Barucca, Deepnarayan Biswas, Tien-Lin Lee, Emiliano Marchetti, Alberto Martinelli, Davide Peddis, Gaspare Varvaro\",\"doi\":\"10.1039/d5nr00971e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epitaxial heterostructures integrating thin Fe3O4 films hold great potential for spintronics, magnetoionics, and multifunctional device development. In this work, the morpho-structural and magnetic properties of all-spinel Fe3O4/MgCr2O4/Fe3O4 trilayers grown on a MgCr2O4 buffer-layer, exhibiting very close lattice matching, were investigated by using both surface and bulk sensitive techniques. The close lattice match between Fe3O4 and MgCr2O4 enables the growth of epitaxial heterostructures with magnetically decoupled Fe3O4 layers for spacer thicknesses ≥ 1.6 nm, while reducing the formation of antiphase boundaries. Despite localized interphase diffusion, which leads to the formation of a mixed Cr/Fe spinel oxide with magnetically polarized Cr ions at the Fe3O4/MgCr2O4 interfaces, the overall magnetic properties remain largely consistent with those of the individual Fe3O4 layers. This study sheds light on the magnetic interactions within Fe3O4 layers mediated by a MgCr2O4 spacer, and demonstrates the feasibility of the approach in preserving the properties of thin Fe3O4 films, in complex heterostructures, thus offering a promising pathway for designing advanced all-spinel oxide devices.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00971e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00971e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

集成Fe3O4薄膜的外延异质结构在自旋电子学、磁离子学和多功能器件开发方面具有很大的潜力。在这项工作中,使用表面和体敏感技术研究了在MgCr2O4缓冲层上生长的具有非常紧密晶格匹配的全尖晶石Fe3O4/MgCr2O4/Fe3O4三层的形态结构和磁性能。Fe3O4和MgCr2O4之间的晶格匹配使得磁去耦Fe3O4层的外延异质结构在厚度≥1.6 nm的间隔层中生长,同时减少了反相边界的形成。尽管局部相扩散导致在Fe3O4/MgCr2O4界面形成具有磁性极化Cr离子的混合Cr/Fe尖晶石氧化物,但整体磁性能与单个Fe3O4层的磁性能基本保持一致。本研究揭示了MgCr2O4间隔剂在Fe3O4层内的磁相互作用,并证明了该方法在复杂异质结构中保留Fe3O4薄膜性能的可行性,从而为设计先进的全尖晶石氧化物器件提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Interfacial Magnetism in All-Spinel Fe3O4/MgCr2O4/Fe3O4 Epitaxial Heterostructures
Epitaxial heterostructures integrating thin Fe3O4 films hold great potential for spintronics, magnetoionics, and multifunctional device development. In this work, the morpho-structural and magnetic properties of all-spinel Fe3O4/MgCr2O4/Fe3O4 trilayers grown on a MgCr2O4 buffer-layer, exhibiting very close lattice matching, were investigated by using both surface and bulk sensitive techniques. The close lattice match between Fe3O4 and MgCr2O4 enables the growth of epitaxial heterostructures with magnetically decoupled Fe3O4 layers for spacer thicknesses ≥ 1.6 nm, while reducing the formation of antiphase boundaries. Despite localized interphase diffusion, which leads to the formation of a mixed Cr/Fe spinel oxide with magnetically polarized Cr ions at the Fe3O4/MgCr2O4 interfaces, the overall magnetic properties remain largely consistent with those of the individual Fe3O4 layers. This study sheds light on the magnetic interactions within Fe3O4 layers mediated by a MgCr2O4 spacer, and demonstrates the feasibility of the approach in preserving the properties of thin Fe3O4 films, in complex heterostructures, thus offering a promising pathway for designing advanced all-spinel oxide devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信