基于t2的水抑制扩散成像(T2wsup-dMRI)技术数据模式优化及分析算法

IF 3.2
Tokunori Kimura
{"title":"基于t2的水抑制扩散成像(T2wsup-dMRI)技术数据模式优化及分析算法","authors":"Tokunori Kimura","doi":"10.2463/mrms.tn.2024-0181","DOIUrl":null,"url":null,"abstract":"<p><p>We have proposed a T2-based free water suppression diffusion MRI (T2wsup-dMRI) technique to address parameter quantification issues due to cerebrospinal fluid (CSF) partial volume effects (PVEs), using a closed form (CF) algorithm. This study optimizes data patterns in (TE, b-value) space and analyzes algorithms for enhanced accuracy and precision. We simulated noise-added numerical, phantom, and brain MRI data to evaluate relative error and coefficient of variation in quantitative parameters using various data patterns and analysis algorithms (CF and least squares [LSQ] fitting). With 4 minimum data points applied to healthy brain tissue with T2 < 100 ms, the CF algorithm with water volume separation was optimal. For more than 4 points, a smaller b-value with shorter TE combined with 2d single- and bi-exponential LSQ fitting provided the best results. The T2wsup-dMRI technique reduces CSF-PVE artifacts in tissue-specific parameter quantification, enhancing approaches for patient needs, data acquisition, and computing costs.</p>","PeriodicalId":94126,"journal":{"name":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the Data Pattern and Analysis Algorithm for the T2-based Water Suppression Diffusion MRImaging (T2wsup-dMRI) Technique.\",\"authors\":\"Tokunori Kimura\",\"doi\":\"10.2463/mrms.tn.2024-0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have proposed a T2-based free water suppression diffusion MRI (T2wsup-dMRI) technique to address parameter quantification issues due to cerebrospinal fluid (CSF) partial volume effects (PVEs), using a closed form (CF) algorithm. This study optimizes data patterns in (TE, b-value) space and analyzes algorithms for enhanced accuracy and precision. We simulated noise-added numerical, phantom, and brain MRI data to evaluate relative error and coefficient of variation in quantitative parameters using various data patterns and analysis algorithms (CF and least squares [LSQ] fitting). With 4 minimum data points applied to healthy brain tissue with T2 < 100 ms, the CF algorithm with water volume separation was optimal. For more than 4 points, a smaller b-value with shorter TE combined with 2d single- and bi-exponential LSQ fitting provided the best results. The T2wsup-dMRI technique reduces CSF-PVE artifacts in tissue-specific parameter quantification, enhancing approaches for patient needs, data acquisition, and computing costs.</p>\",\"PeriodicalId\":94126,\"journal\":{\"name\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.tn.2024-0181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2463/mrms.tn.2024-0181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于t2的自由水抑制扩散MRI (T2wsup-dMRI)技术,使用封闭形式(CF)算法来解决脑脊液(CSF)部分体积效应(pve)引起的参数量化问题。本研究优化了(TE, b值)空间中的数据模式,并分析了提高准确性和精度的算法。我们模拟了添加噪声的数值、幻像和脑MRI数据,使用各种数据模式和分析算法(CF和最小二乘[LSQ]拟合)来评估定量参数的相对误差和变异系数。当T2 < 100 ms时,4个最小数据点应用于健康脑组织时,具有水体积分离的CF算法最优。对于大于4个点,较小的b值和较短的TE结合二维单指数和双指数LSQ拟合效果最好。T2wsup-dMRI技术减少了组织特异性参数量化中的CSF-PVE伪影,增强了患者需求、数据采集和计算成本的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of the Data Pattern and Analysis Algorithm for the T2-based Water Suppression Diffusion MRImaging (T2wsup-dMRI) Technique.

We have proposed a T2-based free water suppression diffusion MRI (T2wsup-dMRI) technique to address parameter quantification issues due to cerebrospinal fluid (CSF) partial volume effects (PVEs), using a closed form (CF) algorithm. This study optimizes data patterns in (TE, b-value) space and analyzes algorithms for enhanced accuracy and precision. We simulated noise-added numerical, phantom, and brain MRI data to evaluate relative error and coefficient of variation in quantitative parameters using various data patterns and analysis algorithms (CF and least squares [LSQ] fitting). With 4 minimum data points applied to healthy brain tissue with T2 < 100 ms, the CF algorithm with water volume separation was optimal. For more than 4 points, a smaller b-value with shorter TE combined with 2d single- and bi-exponential LSQ fitting provided the best results. The T2wsup-dMRI technique reduces CSF-PVE artifacts in tissue-specific parameter quantification, enhancing approaches for patient needs, data acquisition, and computing costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信