三维干细胞培养中机械环境改变对细胞外囊泡治疗潜力的影响。

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0189
Wu Young Kang, Sunyoung Jung, Hyundoo Jeong, Hyun-Myung Woo, Min-Ho Kang, Hojae Bae, Jae Min Cha
{"title":"三维干细胞培养中机械环境改变对细胞外囊泡治疗潜力的影响。","authors":"Wu Young Kang, Sunyoung Jung, Hyundoo Jeong, Hyun-Myung Woo, Min-Ho Kang, Hojae Bae, Jae Min Cha","doi":"10.34133/bmr.0189","DOIUrl":null,"url":null,"abstract":"<p><p>Stem-cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic option, addressing the limitations of conventional stem cell therapies. However, the variability and poorly defined therapeutic contents of EVs produced under standard 2-dimensional culture conditions present challenges for their clinical application. In this study, we investigated how the therapeutic properties of mesenchymal stem cell (MSC)-derived EVs can be enhanced by culturing MSCs within 3-dimensional hydrogels that have tunable mechanical properties. Our results demonstrate that different mechanical cues from the culture environment can induce specific gene expression changes in MSCs without compromising their inherent characteristics. Furthermore, EVs derived from these MSCs exhibited distinct angiogenic and immunomodulatory activities, which were dependent on the mechanical properties of the hydrogels used. A comprehensive analysis of the cytokines and microRNAs present in the EVs provided additional validation of these findings. By utilizing a noninvasive culture method that eliminates the need for genetic modification or exogenous biochemical supplementation, our approach presents a novel platform for the tailored production of EVs, thereby enhancing their therapeutic potential in regenerative medicine.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0189"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Mechanical Environment Alterations in 3D Stem Cell Culture on the Therapeutic Potential of Extracellular Vesicles.\",\"authors\":\"Wu Young Kang, Sunyoung Jung, Hyundoo Jeong, Hyun-Myung Woo, Min-Ho Kang, Hojae Bae, Jae Min Cha\",\"doi\":\"10.34133/bmr.0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem-cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic option, addressing the limitations of conventional stem cell therapies. However, the variability and poorly defined therapeutic contents of EVs produced under standard 2-dimensional culture conditions present challenges for their clinical application. In this study, we investigated how the therapeutic properties of mesenchymal stem cell (MSC)-derived EVs can be enhanced by culturing MSCs within 3-dimensional hydrogels that have tunable mechanical properties. Our results demonstrate that different mechanical cues from the culture environment can induce specific gene expression changes in MSCs without compromising their inherent characteristics. Furthermore, EVs derived from these MSCs exhibited distinct angiogenic and immunomodulatory activities, which were dependent on the mechanical properties of the hydrogels used. A comprehensive analysis of the cytokines and microRNAs present in the EVs provided additional validation of these findings. By utilizing a noninvasive culture method that eliminates the need for genetic modification or exogenous biochemical supplementation, our approach presents a novel platform for the tailored production of EVs, thereby enhancing their therapeutic potential in regenerative medicine.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0189\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

干细胞来源的细胞外囊泡(ev)已成为一种有前途的治疗选择,解决了传统干细胞治疗的局限性。然而,在标准二维培养条件下产生的ev的可变性和不明确的治疗含量为其临床应用带来了挑战。在这项研究中,我们研究了如何通过在具有可调机械性能的三维水凝胶中培养间充质干细胞来增强间充质干细胞(MSC)衍生的ev的治疗特性。我们的研究结果表明,来自培养环境的不同机械提示可以诱导MSCs中特定的基因表达变化,而不会损害其固有特性。此外,来自这些间充质干细胞的ev表现出不同的血管生成和免疫调节活性,这取决于所使用的水凝胶的机械性能。对ev中存在的细胞因子和microrna的综合分析为这些发现提供了额外的验证。通过利用无创培养方法,消除了基因改造或外源生化补充的需要,我们的方法为定制电动汽车的生产提供了一个新的平台,从而增强了它们在再生医学中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Mechanical Environment Alterations in 3D Stem Cell Culture on the Therapeutic Potential of Extracellular Vesicles.

Stem-cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic option, addressing the limitations of conventional stem cell therapies. However, the variability and poorly defined therapeutic contents of EVs produced under standard 2-dimensional culture conditions present challenges for their clinical application. In this study, we investigated how the therapeutic properties of mesenchymal stem cell (MSC)-derived EVs can be enhanced by culturing MSCs within 3-dimensional hydrogels that have tunable mechanical properties. Our results demonstrate that different mechanical cues from the culture environment can induce specific gene expression changes in MSCs without compromising their inherent characteristics. Furthermore, EVs derived from these MSCs exhibited distinct angiogenic and immunomodulatory activities, which were dependent on the mechanical properties of the hydrogels used. A comprehensive analysis of the cytokines and microRNAs present in the EVs provided additional validation of these findings. By utilizing a noninvasive culture method that eliminates the need for genetic modification or exogenous biochemical supplementation, our approach presents a novel platform for the tailored production of EVs, thereby enhancing their therapeutic potential in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信