多组学技术揭示了过敏性鼻炎和便秘患儿肠道菌群的变化对芳香氨基酸代谢的刺激作用。

IF 3.3 Q2 ALLERGY
Frontiers in allergy Pub Date : 2025-05-09 eCollection Date: 2025-01-01 DOI:10.3389/falgy.2025.1562832
Chunyan Wang, Haiying Liu, Xiaoli Li, Wei Kong, Hui Wu, Congfu Huang
{"title":"多组学技术揭示了过敏性鼻炎和便秘患儿肠道菌群的变化对芳香氨基酸代谢的刺激作用。","authors":"Chunyan Wang, Haiying Liu, Xiaoli Li, Wei Kong, Hui Wu, Congfu Huang","doi":"10.3389/falgy.2025.1562832","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Comorbid allergic rhinitis and constipation (ARFC) in children are associated with gut microbiota (GM) dysbiosis and metabolic perturbations; however, the underlying mechanistic interplay remains unclear.</p><p><strong>Objective: </strong>This multi-omics study aimed to characterize GM and fecal metabolomic signatures in preschool ARFC children and elucidate microbial-metabolite interactions driving dual symptomatology.</p><p><strong>Methods: </strong>Fecal samples from 16 ARFC and 15 healthy control (HC) children underwent high-throughput absolute quantification 16S rRNA sequencing and untargeted metabolomics. Differential taxa and metabolites were identified via LEfSe and OPLS-DA (VIP > 1, false discovery rate (FDR) <i>q</i> < 0.05). Microbial-metabolite networks were reconstructed using genome-scale metabolic modeling and KEGG pathway analysis.</p><p><strong>Results: </strong>The ARFC group exhibited distinct β-diversity (<i>P</i> = 0.031), marked by elevated <i>Hungatella</i>, <i>Tyzzerella</i>, and <i>Bifidobacterium longum</i> (<i>P</i> < 0.05). Metabolomics revealed upregulated aromatic amino acids (AAAs), neurotransmitters, and bile acids (FDR <i>q</i> < 0.05), with enrichment in tryptophan/tyrosine pathways (<i>P</i> < 0.01). Bioinformatic modeling linked <i>Hungatella</i> to tryptophan hydroxylase (EC:1.14.16.4), driving serotonin synthesis, and <i>Tyzzerella</i> to indoleamine 2,3-dioxygenase (EC:1.13.11.52), promoting kynurenine production. <i>Bifidobacterium longum</i> correlated with phenylalanine hydroxylase (EC:1.14.16.1), enhancing phenylalanine derivatives. A combined GM-metabolite diagnostic model demonstrated robust accuracy (AUC = 0.8).</p><p><strong>Conclusion: </strong>GM dysbiosis in ARFC children activates AAA metabolism, generating neuroactive and pro-inflammatory metabolites that may exacerbate allergic and gastrointestinal symptoms. These findings highlight microbial-metabolite axes as therapeutic targets. Study limitations include cohort size and lack of disease-specific controls, necessitating validation in expanded cohorts.</p>","PeriodicalId":73062,"journal":{"name":"Frontiers in allergy","volume":"6 ","pages":"1562832"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics technology reveals the changes in gut microbiota to stimulate aromatic amino acid metabolism in children with allergic rhinitis and constipation.\",\"authors\":\"Chunyan Wang, Haiying Liu, Xiaoli Li, Wei Kong, Hui Wu, Congfu Huang\",\"doi\":\"10.3389/falgy.2025.1562832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Comorbid allergic rhinitis and constipation (ARFC) in children are associated with gut microbiota (GM) dysbiosis and metabolic perturbations; however, the underlying mechanistic interplay remains unclear.</p><p><strong>Objective: </strong>This multi-omics study aimed to characterize GM and fecal metabolomic signatures in preschool ARFC children and elucidate microbial-metabolite interactions driving dual symptomatology.</p><p><strong>Methods: </strong>Fecal samples from 16 ARFC and 15 healthy control (HC) children underwent high-throughput absolute quantification 16S rRNA sequencing and untargeted metabolomics. Differential taxa and metabolites were identified via LEfSe and OPLS-DA (VIP > 1, false discovery rate (FDR) <i>q</i> < 0.05). Microbial-metabolite networks were reconstructed using genome-scale metabolic modeling and KEGG pathway analysis.</p><p><strong>Results: </strong>The ARFC group exhibited distinct β-diversity (<i>P</i> = 0.031), marked by elevated <i>Hungatella</i>, <i>Tyzzerella</i>, and <i>Bifidobacterium longum</i> (<i>P</i> < 0.05). Metabolomics revealed upregulated aromatic amino acids (AAAs), neurotransmitters, and bile acids (FDR <i>q</i> < 0.05), with enrichment in tryptophan/tyrosine pathways (<i>P</i> < 0.01). Bioinformatic modeling linked <i>Hungatella</i> to tryptophan hydroxylase (EC:1.14.16.4), driving serotonin synthesis, and <i>Tyzzerella</i> to indoleamine 2,3-dioxygenase (EC:1.13.11.52), promoting kynurenine production. <i>Bifidobacterium longum</i> correlated with phenylalanine hydroxylase (EC:1.14.16.1), enhancing phenylalanine derivatives. A combined GM-metabolite diagnostic model demonstrated robust accuracy (AUC = 0.8).</p><p><strong>Conclusion: </strong>GM dysbiosis in ARFC children activates AAA metabolism, generating neuroactive and pro-inflammatory metabolites that may exacerbate allergic and gastrointestinal symptoms. These findings highlight microbial-metabolite axes as therapeutic targets. Study limitations include cohort size and lack of disease-specific controls, necessitating validation in expanded cohorts.</p>\",\"PeriodicalId\":73062,\"journal\":{\"name\":\"Frontiers in allergy\",\"volume\":\"6 \",\"pages\":\"1562832\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in allergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/falgy.2025.1562832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in allergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/falgy.2025.1562832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:儿童共病变应性鼻炎和便秘(ARFC)与肠道微生物群(GM)生态失调和代谢紊乱有关;然而,潜在的机制相互作用仍不清楚。目的:这项多组学研究旨在表征学龄前ARFC儿童的转基因和粪便代谢组学特征,并阐明驱动双重症状的微生物-代谢物相互作用。方法:对16例ARFC患儿和15例健康对照(HC)患儿的粪便进行高通量绝对定量16S rRNA测序和非靶向代谢组学分析。结果:ARFC组表现出明显的β多样性(P = 0.031),表现为Hungatella、Tyzzerella和长双歧杆菌(P q)对色氨酸羟化酶(EC:1.14.16.4)的升高,促进血清素的合成,Tyzzerella对吲哚胺2,3-双加氧酶(EC:1.13.11.52)的升高,促进犬尿氨酸的生成。长双歧杆菌与苯丙氨酸羟化酶相关(EC:1.14.16.1),增强苯丙氨酸衍生物。gm -代谢物联合诊断模型显示出强大的准确性(AUC = 0.8)。结论:ARFC儿童GM生态失调激活AAA代谢,产生神经活性和促炎代谢物,可能加重过敏和胃肠道症状。这些发现突出了微生物代谢物轴作为治疗靶点。研究的局限性包括队列大小和缺乏疾病特异性对照,需要在扩大队列中进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-omics technology reveals the changes in gut microbiota to stimulate aromatic amino acid metabolism in children with allergic rhinitis and constipation.

Background: Comorbid allergic rhinitis and constipation (ARFC) in children are associated with gut microbiota (GM) dysbiosis and metabolic perturbations; however, the underlying mechanistic interplay remains unclear.

Objective: This multi-omics study aimed to characterize GM and fecal metabolomic signatures in preschool ARFC children and elucidate microbial-metabolite interactions driving dual symptomatology.

Methods: Fecal samples from 16 ARFC and 15 healthy control (HC) children underwent high-throughput absolute quantification 16S rRNA sequencing and untargeted metabolomics. Differential taxa and metabolites were identified via LEfSe and OPLS-DA (VIP > 1, false discovery rate (FDR) q < 0.05). Microbial-metabolite networks were reconstructed using genome-scale metabolic modeling and KEGG pathway analysis.

Results: The ARFC group exhibited distinct β-diversity (P = 0.031), marked by elevated Hungatella, Tyzzerella, and Bifidobacterium longum (P < 0.05). Metabolomics revealed upregulated aromatic amino acids (AAAs), neurotransmitters, and bile acids (FDR q < 0.05), with enrichment in tryptophan/tyrosine pathways (P < 0.01). Bioinformatic modeling linked Hungatella to tryptophan hydroxylase (EC:1.14.16.4), driving serotonin synthesis, and Tyzzerella to indoleamine 2,3-dioxygenase (EC:1.13.11.52), promoting kynurenine production. Bifidobacterium longum correlated with phenylalanine hydroxylase (EC:1.14.16.1), enhancing phenylalanine derivatives. A combined GM-metabolite diagnostic model demonstrated robust accuracy (AUC = 0.8).

Conclusion: GM dysbiosis in ARFC children activates AAA metabolism, generating neuroactive and pro-inflammatory metabolites that may exacerbate allergic and gastrointestinal symptoms. These findings highlight microbial-metabolite axes as therapeutic targets. Study limitations include cohort size and lack of disease-specific controls, necessitating validation in expanded cohorts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信