{"title":"厄洛替尼治疗乳腺癌的叶酸靶向纳米脂系统的开发和体内生物分布。","authors":"Bharti Mangla, Tabish Pathan, Pankaj Kumar, Geeta Aggarwal","doi":"10.1080/17435889.2025.2508135","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of the study was to develop folate targeted nanolipid carrier system (FA-ERT-NLCs) and study its in vivo oral biodistribution study for its absorption mechanism.</p><p><strong>Materials & methods: </strong>Folic acid was conjugated through pyridine and EDC chemistry. FA-ERT-NLCs was developed by high-pressure homogenization and parameters were optimized through design expert software. FA-ERT-NLCs were evaluated through <i>in vitro</i> characterization, <i>Ex vivo</i> and <i>in vivo</i> biodistribution studies. Moreover, female Wistar rats were used in this study.</p><p><strong>Results: </strong>Findings showed that targeted NLCs were found in nanometric range (182.34 nm) with negatively charge surface and PDI was found to be -16.2 mV and 0.203. The folate content in the conjugate was measured and found to be 71.33%. The depth of ERT and FC-ERT-NLCs was found to be 20 µm and 80.2 µm in rat intestine. Developed formulation was effective against MCF-7 cell lines. The IC50 values were found to be 526.2 µg/mL for ERT and 333.7 µg/mL for FC-ERT-NLCs. FA-ERT-NLCs are absorbed through intestine by lymphatic system.</p><p><strong>Conclusion: </strong>This study showed a promising targeted strategy for effective and safer breast cancer treatment.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1525-1536"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233878/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and <i>in vivo</i> biodistribution of folate-targeted nanolipid system for erlotinib in breast cancer treatment.\",\"authors\":\"Bharti Mangla, Tabish Pathan, Pankaj Kumar, Geeta Aggarwal\",\"doi\":\"10.1080/17435889.2025.2508135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>The aim of the study was to develop folate targeted nanolipid carrier system (FA-ERT-NLCs) and study its in vivo oral biodistribution study for its absorption mechanism.</p><p><strong>Materials & methods: </strong>Folic acid was conjugated through pyridine and EDC chemistry. FA-ERT-NLCs was developed by high-pressure homogenization and parameters were optimized through design expert software. FA-ERT-NLCs were evaluated through <i>in vitro</i> characterization, <i>Ex vivo</i> and <i>in vivo</i> biodistribution studies. Moreover, female Wistar rats were used in this study.</p><p><strong>Results: </strong>Findings showed that targeted NLCs were found in nanometric range (182.34 nm) with negatively charge surface and PDI was found to be -16.2 mV and 0.203. The folate content in the conjugate was measured and found to be 71.33%. The depth of ERT and FC-ERT-NLCs was found to be 20 µm and 80.2 µm in rat intestine. Developed formulation was effective against MCF-7 cell lines. The IC50 values were found to be 526.2 µg/mL for ERT and 333.7 µg/mL for FC-ERT-NLCs. FA-ERT-NLCs are absorbed through intestine by lymphatic system.</p><p><strong>Conclusion: </strong>This study showed a promising targeted strategy for effective and safer breast cancer treatment.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":\" \",\"pages\":\"1525-1536\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233878/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17435889.2025.2508135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2508135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Development and in vivo biodistribution of folate-targeted nanolipid system for erlotinib in breast cancer treatment.
Aim: The aim of the study was to develop folate targeted nanolipid carrier system (FA-ERT-NLCs) and study its in vivo oral biodistribution study for its absorption mechanism.
Materials & methods: Folic acid was conjugated through pyridine and EDC chemistry. FA-ERT-NLCs was developed by high-pressure homogenization and parameters were optimized through design expert software. FA-ERT-NLCs were evaluated through in vitro characterization, Ex vivo and in vivo biodistribution studies. Moreover, female Wistar rats were used in this study.
Results: Findings showed that targeted NLCs were found in nanometric range (182.34 nm) with negatively charge surface and PDI was found to be -16.2 mV and 0.203. The folate content in the conjugate was measured and found to be 71.33%. The depth of ERT and FC-ERT-NLCs was found to be 20 µm and 80.2 µm in rat intestine. Developed formulation was effective against MCF-7 cell lines. The IC50 values were found to be 526.2 µg/mL for ERT and 333.7 µg/mL for FC-ERT-NLCs. FA-ERT-NLCs are absorbed through intestine by lymphatic system.
Conclusion: This study showed a promising targeted strategy for effective and safer breast cancer treatment.