脂滴在河豚对哈维弧菌免疫应答中的新作用。

IF 5.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Marine Life Science & Technology Pub Date : 2025-03-17 eCollection Date: 2025-05-01 DOI:10.1007/s42995-025-00286-w
Xiaorui Song, Yaxing Yang, Nan Cui, Tianying Lei, Xingkun Jin, Ying Huang, Yan Shi, Zhe Zhao
{"title":"脂滴在河豚对哈维弧菌免疫应答中的新作用。","authors":"Xiaorui Song, Yaxing Yang, Nan Cui, Tianying Lei, Xingkun Jin, Ying Huang, Yan Shi, Zhe Zhao","doi":"10.1007/s42995-025-00286-w","DOIUrl":null,"url":null,"abstract":"<p><p>As dynamic and functionally active organelles, lipid droplets (LDs) mainly function in lipid anabolism, while recent studies showed that mammalian LDs also actively participated in innate immunity; however, the specific roles and regulation mechanism remain relatively unexplored, and the existing studies were mainly limited to mammals. In the present study, we first found that <i>Vibrio harveyi</i>, a serious pathogen in marine environment, could induce LDs accumulation in the liver of obscure puffer <i>Takifugu obscurus</i> on the histology, morphology and molecular levels, and the induction mainly conducted by promoting the synthesis of neutral lipids. Moreover, the antibacterial activity of LD proteins was significantly enhanced upon <i>V. harveyi</i> stimulation, and showed broad-spectrum characteristic. While the inhibition of LDs formation downregulated the expression of immune-related genes and immune signaling elements, highlighting the potential critical roles of LDs during the bacterial infection. The isolated LDs from obscure puffer liver were examined via proteomic analyses, and the data supported the conservative property of LDs from bacteria to humans, and revealed that numerous innate immune system-related components were enriched on the surface of LDs. These results will deepen the understanding of LDs biology and host immune defense mechanism, shedding light on the new strategies for the development of anti-infective therapies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-025-00286-w.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 2","pages":"271-283"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging role of lipid droplets in obscure puffer immune response against <i>Vibrio harveyi</i>.\",\"authors\":\"Xiaorui Song, Yaxing Yang, Nan Cui, Tianying Lei, Xingkun Jin, Ying Huang, Yan Shi, Zhe Zhao\",\"doi\":\"10.1007/s42995-025-00286-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As dynamic and functionally active organelles, lipid droplets (LDs) mainly function in lipid anabolism, while recent studies showed that mammalian LDs also actively participated in innate immunity; however, the specific roles and regulation mechanism remain relatively unexplored, and the existing studies were mainly limited to mammals. In the present study, we first found that <i>Vibrio harveyi</i>, a serious pathogen in marine environment, could induce LDs accumulation in the liver of obscure puffer <i>Takifugu obscurus</i> on the histology, morphology and molecular levels, and the induction mainly conducted by promoting the synthesis of neutral lipids. Moreover, the antibacterial activity of LD proteins was significantly enhanced upon <i>V. harveyi</i> stimulation, and showed broad-spectrum characteristic. While the inhibition of LDs formation downregulated the expression of immune-related genes and immune signaling elements, highlighting the potential critical roles of LDs during the bacterial infection. The isolated LDs from obscure puffer liver were examined via proteomic analyses, and the data supported the conservative property of LDs from bacteria to humans, and revealed that numerous innate immune system-related components were enriched on the surface of LDs. These results will deepen the understanding of LDs biology and host immune defense mechanism, shedding light on the new strategies for the development of anti-infective therapies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-025-00286-w.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"7 2\",\"pages\":\"271-283\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-025-00286-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-025-00286-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脂滴是一种动态的、功能活跃的细胞器,主要参与脂质合成代谢,近年来研究表明,哺乳动物脂滴也积极参与先天免疫;但其具体作用和调控机制尚不明确,现有研究主要局限于哺乳动物。在本研究中,我们首先发现海洋环境中的严重病原菌——哈韦伊弧菌(Vibrio harveyi)可以在组织学、形态学和分子水平诱导暗鲀(Takifugu obscurus)肝脏内ld的积累,诱导主要是通过促进中性脂质的合成来实现的。此外,在V. harveyi刺激下,LD蛋白的抗菌活性显著增强,并表现出广谱特征。而抑制LDs的形成下调了免疫相关基因和免疫信号元件的表达,突出了LDs在细菌感染过程中的潜在关键作用。通过蛋白质组学分析对从隐隐性河豚肝分离的ld进行了检测,数据支持从细菌到人类的ld的保守性,并揭示了许多先天免疫系统相关成分富集在ld表面。这些结果将加深对LDs生物学和宿主免疫防御机制的认识,为抗感染治疗的开发提供新的策略。补充信息:在线版本包含补充资料,可在10.1007/s42995-025-00286-w获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging role of lipid droplets in obscure puffer immune response against Vibrio harveyi.

As dynamic and functionally active organelles, lipid droplets (LDs) mainly function in lipid anabolism, while recent studies showed that mammalian LDs also actively participated in innate immunity; however, the specific roles and regulation mechanism remain relatively unexplored, and the existing studies were mainly limited to mammals. In the present study, we first found that Vibrio harveyi, a serious pathogen in marine environment, could induce LDs accumulation in the liver of obscure puffer Takifugu obscurus on the histology, morphology and molecular levels, and the induction mainly conducted by promoting the synthesis of neutral lipids. Moreover, the antibacterial activity of LD proteins was significantly enhanced upon V. harveyi stimulation, and showed broad-spectrum characteristic. While the inhibition of LDs formation downregulated the expression of immune-related genes and immune signaling elements, highlighting the potential critical roles of LDs during the bacterial infection. The isolated LDs from obscure puffer liver were examined via proteomic analyses, and the data supported the conservative property of LDs from bacteria to humans, and revealed that numerous innate immune system-related components were enriched on the surface of LDs. These results will deepen the understanding of LDs biology and host immune defense mechanism, shedding light on the new strategies for the development of anti-infective therapies.

Supplementary information: The online version contains supplementary material available at 10.1007/s42995-025-00286-w.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Life Science & Technology
Marine Life Science & Technology MARINE & FRESHWATER BIOLOGY-
CiteScore
9.60
自引率
10.50%
发文量
58
期刊介绍: Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats. The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信