过程数据特征提取的路径签名视角。

IF 1.8 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xueying Tang, Jingchen Liu, Zhiliang Ying
{"title":"过程数据特征提取的路径签名视角。","authors":"Xueying Tang,&nbsp;Jingchen Liu,&nbsp;Zhiliang Ying","doi":"10.1111/bmsp.12390","DOIUrl":null,"url":null,"abstract":"<p>Computer-based interactive items have become prevalent in recent educational assessments. In such items, the entire human-computer interactive process is recorded in a log file and is known as the response process. These data are noisy, diverse, and in a nonstandard format. Several feature extraction methods have been developed to overcome the difficulties in process data analysis. However, these methods often focus on the action sequence and ignore the time sequence in response processes. In this paper, we introduce a new feature extraction method that incorporates the information in both the action sequence and the response time sequence. The method is based on the concept of path signature from stochastic analysis. We apply the proposed method to both simulated data and real response process data from PIAAC. A prediction framework is used to show that taking time information into account provides a more comprehensive understanding of respondents' behaviors.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"78 3","pages":"939-964"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A path signature perspective of process data feature extraction\",\"authors\":\"Xueying Tang,&nbsp;Jingchen Liu,&nbsp;Zhiliang Ying\",\"doi\":\"10.1111/bmsp.12390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computer-based interactive items have become prevalent in recent educational assessments. In such items, the entire human-computer interactive process is recorded in a log file and is known as the response process. These data are noisy, diverse, and in a nonstandard format. Several feature extraction methods have been developed to overcome the difficulties in process data analysis. However, these methods often focus on the action sequence and ignore the time sequence in response processes. In this paper, we introduce a new feature extraction method that incorporates the information in both the action sequence and the response time sequence. The method is based on the concept of path signature from stochastic analysis. We apply the proposed method to both simulated data and real response process data from PIAAC. A prediction framework is used to show that taking time information into account provides a more comprehensive understanding of respondents' behaviors.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\"78 3\",\"pages\":\"939-964\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/bmsp.12390\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/bmsp.12390","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

以电脑为基础的互动项目在最近的教育评估中变得普遍。在这些项目中,整个人机交互过程被记录在一个日志文件中,被称为响应过程。这些数据是嘈杂的、多样化的,并且采用非标准格式。为了克服过程数据分析中的困难,已经开发了几种特征提取方法。然而,这些方法往往侧重于动作顺序,而忽略了响应过程中的时间顺序。本文提出了一种融合动作序列和响应时间序列信息的特征提取方法。该方法基于随机分析中路径特征的概念。我们将该方法应用于PIAAC的模拟数据和实际响应过程数据。一个预测框架被用来表明,考虑时间信息提供了一个更全面的了解受访者的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A path signature perspective of process data feature extraction

A path signature perspective of process data feature extraction

Computer-based interactive items have become prevalent in recent educational assessments. In such items, the entire human-computer interactive process is recorded in a log file and is known as the response process. These data are noisy, diverse, and in a nonstandard format. Several feature extraction methods have been developed to overcome the difficulties in process data analysis. However, these methods often focus on the action sequence and ignore the time sequence in response processes. In this paper, we introduce a new feature extraction method that incorporates the information in both the action sequence and the response time sequence. The method is based on the concept of path signature from stochastic analysis. We apply the proposed method to both simulated data and real response process data from PIAAC. A prediction framework is used to show that taking time information into account provides a more comprehensive understanding of respondents' behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信