Tomáš Obert, Tengyue Zhang, Ivan Rurik, Peter Vďačný
{"title":"重新发现和形态-分子特征的三astome纤毛虫,与他们的环节动物宿主的生态进化关系的新见解。","authors":"Tomáš Obert, Tengyue Zhang, Ivan Rurik, Peter Vďačný","doi":"10.1007/s42995-024-00275-5","DOIUrl":null,"url":null,"abstract":"<p><p>Astome ciliates live in the digestive tract of a broad spectrum of marine, freshwater, and terricolous annelids. In aquatic lumbriculid and criodrilid oligochaetes collected in Central Europe, we rediscovered three insufficiently known astomes: <i>Hoplitophrya secans</i>, <i>Mesnilella clavata</i>, and <i>Buchneriella criodrili</i>. Their morphology was studied using in vivo observation, protargol, and dry silver nitrate impregnation. Multiple nuclear and mitochondrial molecular markers were used to determine their phylogenetic positions and reconstruct their evolutionary history. According to our phylogenetic analyses: (1) mouthless ciliates isolated from annelids form a robustly supported monophylum within the class Oligohymenophorea, (2) the progenitor of astomes invaded the digestive tract of marine polychaetes during the Paleozoic era, (3) lumbricid earthworms likely served as a source of astomes for criodrilid, almid, and megascolecid earthworms, (4) the ancestral host of the earthworm-dwelling astome clade led an endogeic lifestyle, and (5) there were multiple independent transfers of astomes from endogeic to epigeic and anecic earthworms. These findings support previous views of the annelid phylogeny, suggesting that astomes reside and evolve in tandem with annelids for several hundred million years.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00275-5.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 2","pages":"231-255"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102460/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rediscovery and morpho-molecular characterization of three astome ciliates, with new insights into eco-evolutionary associations of astomes with their annelid hosts.\",\"authors\":\"Tomáš Obert, Tengyue Zhang, Ivan Rurik, Peter Vďačný\",\"doi\":\"10.1007/s42995-024-00275-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Astome ciliates live in the digestive tract of a broad spectrum of marine, freshwater, and terricolous annelids. In aquatic lumbriculid and criodrilid oligochaetes collected in Central Europe, we rediscovered three insufficiently known astomes: <i>Hoplitophrya secans</i>, <i>Mesnilella clavata</i>, and <i>Buchneriella criodrili</i>. Their morphology was studied using in vivo observation, protargol, and dry silver nitrate impregnation. Multiple nuclear and mitochondrial molecular markers were used to determine their phylogenetic positions and reconstruct their evolutionary history. According to our phylogenetic analyses: (1) mouthless ciliates isolated from annelids form a robustly supported monophylum within the class Oligohymenophorea, (2) the progenitor of astomes invaded the digestive tract of marine polychaetes during the Paleozoic era, (3) lumbricid earthworms likely served as a source of astomes for criodrilid, almid, and megascolecid earthworms, (4) the ancestral host of the earthworm-dwelling astome clade led an endogeic lifestyle, and (5) there were multiple independent transfers of astomes from endogeic to epigeic and anecic earthworms. These findings support previous views of the annelid phylogeny, suggesting that astomes reside and evolve in tandem with annelids for several hundred million years.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00275-5.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"7 2\",\"pages\":\"231-255\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-024-00275-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00275-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Rediscovery and morpho-molecular characterization of three astome ciliates, with new insights into eco-evolutionary associations of astomes with their annelid hosts.
Astome ciliates live in the digestive tract of a broad spectrum of marine, freshwater, and terricolous annelids. In aquatic lumbriculid and criodrilid oligochaetes collected in Central Europe, we rediscovered three insufficiently known astomes: Hoplitophrya secans, Mesnilella clavata, and Buchneriella criodrili. Their morphology was studied using in vivo observation, protargol, and dry silver nitrate impregnation. Multiple nuclear and mitochondrial molecular markers were used to determine their phylogenetic positions and reconstruct their evolutionary history. According to our phylogenetic analyses: (1) mouthless ciliates isolated from annelids form a robustly supported monophylum within the class Oligohymenophorea, (2) the progenitor of astomes invaded the digestive tract of marine polychaetes during the Paleozoic era, (3) lumbricid earthworms likely served as a source of astomes for criodrilid, almid, and megascolecid earthworms, (4) the ancestral host of the earthworm-dwelling astome clade led an endogeic lifestyle, and (5) there were multiple independent transfers of astomes from endogeic to epigeic and anecic earthworms. These findings support previous views of the annelid phylogeny, suggesting that astomes reside and evolve in tandem with annelids for several hundred million years.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00275-5.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.