sirtuins在促进大型Argopecten扇贝寿命方面的潜在作用。

IF 5.3 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Marine Life Science & Technology Pub Date : 2025-03-04 eCollection Date: 2025-05-01 DOI:10.1007/s42995-024-00269-3
Yang Zhao, Junhao Ning, Yuan Wang, Guilong Liu, Xin Xu, Chunde Wang, Xia Lu
{"title":"sirtuins在促进大型Argopecten扇贝寿命方面的潜在作用。","authors":"Yang Zhao, Junhao Ning, Yuan Wang, Guilong Liu, Xin Xu, Chunde Wang, Xia Lu","doi":"10.1007/s42995-024-00269-3","DOIUrl":null,"url":null,"abstract":"<p><p>Annual bay scallops are commercially significant bivalve species for fisheries and aquaculture, but their small size and severe inbreeding depression impede the development of their industry. Some interspecific hybrids of bay scallops and peruvian scallops show longer lifespans and significantly greater sizes, which may result from the longevity genes in the latter (7-10 years). Sirtuins (<i>SIRTs</i>) play pivotal roles in the genetic control of aging in various model species and human beings. However, the role of <i>SIRTs</i> in longevity has not been systematically studied in aquatic animals. In this study, different gene numbers, sequences, structures and tandem duplications of <i>SIRTs</i> were first identified between the two scallops through genome-wide analysis. Cloning and characteristics of the <i>SIRT1</i> and <i>SIRT6</i> ORFs revealed dramatic variations in amino acids between the two scallops, which may cause intrinsic differences in function for longevity regulation. In particular, the amino acid variations in the N-terminus may auto-regulate conformations, causing intrinsic differences in catalytic activity for longevity regulation. The robust expression of <i>SIRT1</i> and <i>SIRT6-2</i> in peruvian scallops suggested they may exert a role in extending the lifespan. Nutrient restriction (NR) could promote lifespan in terrestrial model organisms, and the <i>SIRTs</i> and their related genes responded to NR for longevity in scallops; peruvian scallops showed a higher ability of autophagy. This study provides potential biomarkers for breeding long-lived larger scallop hybrids for the sustainability of aquaculture. Moreover, the genetic variation during evolution in the two scallops provides a foundation for further research on the longevity function of the <i>SIRTs</i>.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00269-3.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 2","pages":"284-301"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102419/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential roles of the sirtuins in promoting longevity for larger <i>Argopecten</i> scallops.\",\"authors\":\"Yang Zhao, Junhao Ning, Yuan Wang, Guilong Liu, Xin Xu, Chunde Wang, Xia Lu\",\"doi\":\"10.1007/s42995-024-00269-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Annual bay scallops are commercially significant bivalve species for fisheries and aquaculture, but their small size and severe inbreeding depression impede the development of their industry. Some interspecific hybrids of bay scallops and peruvian scallops show longer lifespans and significantly greater sizes, which may result from the longevity genes in the latter (7-10 years). Sirtuins (<i>SIRTs</i>) play pivotal roles in the genetic control of aging in various model species and human beings. However, the role of <i>SIRTs</i> in longevity has not been systematically studied in aquatic animals. In this study, different gene numbers, sequences, structures and tandem duplications of <i>SIRTs</i> were first identified between the two scallops through genome-wide analysis. Cloning and characteristics of the <i>SIRT1</i> and <i>SIRT6</i> ORFs revealed dramatic variations in amino acids between the two scallops, which may cause intrinsic differences in function for longevity regulation. In particular, the amino acid variations in the N-terminus may auto-regulate conformations, causing intrinsic differences in catalytic activity for longevity regulation. The robust expression of <i>SIRT1</i> and <i>SIRT6-2</i> in peruvian scallops suggested they may exert a role in extending the lifespan. Nutrient restriction (NR) could promote lifespan in terrestrial model organisms, and the <i>SIRTs</i> and their related genes responded to NR for longevity in scallops; peruvian scallops showed a higher ability of autophagy. This study provides potential biomarkers for breeding long-lived larger scallop hybrids for the sustainability of aquaculture. Moreover, the genetic variation during evolution in the two scallops provides a foundation for further research on the longevity function of the <i>SIRTs</i>.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00269-3.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"7 2\",\"pages\":\"284-301\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102419/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-024-00269-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00269-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一年生海湾扇贝是渔业和水产养殖中具有重要商业价值的双壳类物种,但其体积小和严重的近交萧条阻碍了其产业的发展。一些海湾扇贝和秘鲁扇贝的种间杂交品种表现出更长的寿命和更大的体型,这可能是由于后者的长寿基因(7-10年)。Sirtuins (SIRTs)在各种模式物种和人类的衰老遗传控制中起着关键作用。然而,在水生动物中,SIRTs在长寿中的作用尚未得到系统的研究。本研究通过全基因组分析,首次在两种扇贝之间鉴定出不同的sirt基因数量、序列、结构和串联重复。SIRT1和SIRT6 orf的克隆和特征揭示了两种扇贝之间氨基酸的巨大差异,这可能导致了长寿调节功能的内在差异。特别是,n端氨基酸的变化可能会自动调节构象,导致长寿调节的催化活性的内在差异。秘鲁扇贝中SIRT1和SIRT6-2的强烈表达表明它们可能在延长寿命方面发挥作用。营养限制能促进陆生模式生物的寿命,扇贝的sirt及其相关基因响应了营养限制对寿命的影响;秘鲁扇贝表现出更高的自噬能力。该研究为培育长寿命大扇贝杂交品种提供了潜在的生物标记物,有利于水产养殖的可持续性。此外,这两种扇贝在进化过程中的遗传变异为进一步研究sirt的长寿功能提供了基础。补充资料:在线版本包含补充资料,下载地址:10.1007/s42995-024-00269-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential roles of the sirtuins in promoting longevity for larger Argopecten scallops.

Annual bay scallops are commercially significant bivalve species for fisheries and aquaculture, but their small size and severe inbreeding depression impede the development of their industry. Some interspecific hybrids of bay scallops and peruvian scallops show longer lifespans and significantly greater sizes, which may result from the longevity genes in the latter (7-10 years). Sirtuins (SIRTs) play pivotal roles in the genetic control of aging in various model species and human beings. However, the role of SIRTs in longevity has not been systematically studied in aquatic animals. In this study, different gene numbers, sequences, structures and tandem duplications of SIRTs were first identified between the two scallops through genome-wide analysis. Cloning and characteristics of the SIRT1 and SIRT6 ORFs revealed dramatic variations in amino acids between the two scallops, which may cause intrinsic differences in function for longevity regulation. In particular, the amino acid variations in the N-terminus may auto-regulate conformations, causing intrinsic differences in catalytic activity for longevity regulation. The robust expression of SIRT1 and SIRT6-2 in peruvian scallops suggested they may exert a role in extending the lifespan. Nutrient restriction (NR) could promote lifespan in terrestrial model organisms, and the SIRTs and their related genes responded to NR for longevity in scallops; peruvian scallops showed a higher ability of autophagy. This study provides potential biomarkers for breeding long-lived larger scallop hybrids for the sustainability of aquaculture. Moreover, the genetic variation during evolution in the two scallops provides a foundation for further research on the longevity function of the SIRTs.

Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00269-3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Life Science & Technology
Marine Life Science & Technology MARINE & FRESHWATER BIOLOGY-
CiteScore
9.60
自引率
10.50%
发文量
58
期刊介绍: Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats. The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信