O-GlcNAcase可瞬时易位至细胞质并调节成骨细胞的分化。

IF 2.6 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Xinyu Zheng , Airi Tanai , Heriati Sitosari , Yao Weng , Anggun Dwi Andini , Koji Kimura , Mika Ikegame , Hirohiko Okamura , Xiaohua Xie
{"title":"O-GlcNAcase可瞬时易位至细胞质并调节成骨细胞的分化。","authors":"Xinyu Zheng ,&nbsp;Airi Tanai ,&nbsp;Heriati Sitosari ,&nbsp;Yao Weng ,&nbsp;Anggun Dwi Andini ,&nbsp;Koji Kimura ,&nbsp;Mika Ikegame ,&nbsp;Hirohiko Okamura ,&nbsp;Xiaohua Xie","doi":"10.1016/j.job.2025.100672","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>O-GlcNAcylation is a reversible post-translational modification mediated by O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT). Although localization of OGT during differentiation has been well studied, the spatial regulation and role of OGA in the maturation of osteoblasts remains unclear. This study investigated the translocation of OGA and its functional effects during the differentiation of osteoblasts.</div></div><div><h3>Methods</h3><div>Localization of OGA was assessed in mouse calvarial osteoblastic cells using immunohistochemistry and in pre-osteoblastic MC3T3-E1 cells using <em>in vitro</em> staining. OGA-knockout (OGA-KO) MC3T3-E1 cells were generated to evaluate differentiation using the osteogenic markers, Sp7, Dlx5, and Runx2, alkaline phosphatase (ALP) activity, and mineralization stains (von Kossa and Alizarin red).</div></div><div><h3>Results</h3><div>OGA was primarily cytoplasmic in osteoblastic cells of the mouse calvaria. In MC3T3-E1 cells, OGA was translocated from the nucleus to the cytoplasm by differentiation Day 3 and was stabilized by Day 6. OGA-KO cells had enhanced differentiation, increased ALP activity and mineralization, and upregulated Sp7 and Dlx5 expression. Immunohistochemistry showed that Sp7 mirrored the shift in localization of OGA, moving from the nucleus to the cytoplasm by Day 6, whereas Runx2 remained in the nucleus throughout differentiation.</div></div><div><h3>Conclusion</h3><div>Our findings reveal that dynamic translocation of OGA is a key event in early differentiation of osteoblasts that regulates maturation of osteoblasts. These insights suggest a novel regulatory role for OGA and identify potential targets for therapeutic strategies in the regeneration of bone.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 3","pages":"Article 100672"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O-GlcNAcase transiently translocates to the cytoplasm and regulates osteoblast differentiation\",\"authors\":\"Xinyu Zheng ,&nbsp;Airi Tanai ,&nbsp;Heriati Sitosari ,&nbsp;Yao Weng ,&nbsp;Anggun Dwi Andini ,&nbsp;Koji Kimura ,&nbsp;Mika Ikegame ,&nbsp;Hirohiko Okamura ,&nbsp;Xiaohua Xie\",\"doi\":\"10.1016/j.job.2025.100672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>O-GlcNAcylation is a reversible post-translational modification mediated by O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT). Although localization of OGT during differentiation has been well studied, the spatial regulation and role of OGA in the maturation of osteoblasts remains unclear. This study investigated the translocation of OGA and its functional effects during the differentiation of osteoblasts.</div></div><div><h3>Methods</h3><div>Localization of OGA was assessed in mouse calvarial osteoblastic cells using immunohistochemistry and in pre-osteoblastic MC3T3-E1 cells using <em>in vitro</em> staining. OGA-knockout (OGA-KO) MC3T3-E1 cells were generated to evaluate differentiation using the osteogenic markers, Sp7, Dlx5, and Runx2, alkaline phosphatase (ALP) activity, and mineralization stains (von Kossa and Alizarin red).</div></div><div><h3>Results</h3><div>OGA was primarily cytoplasmic in osteoblastic cells of the mouse calvaria. In MC3T3-E1 cells, OGA was translocated from the nucleus to the cytoplasm by differentiation Day 3 and was stabilized by Day 6. OGA-KO cells had enhanced differentiation, increased ALP activity and mineralization, and upregulated Sp7 and Dlx5 expression. Immunohistochemistry showed that Sp7 mirrored the shift in localization of OGA, moving from the nucleus to the cytoplasm by Day 6, whereas Runx2 remained in the nucleus throughout differentiation.</div></div><div><h3>Conclusion</h3><div>Our findings reveal that dynamic translocation of OGA is a key event in early differentiation of osteoblasts that regulates maturation of osteoblasts. These insights suggest a novel regulatory role for OGA and identify potential targets for therapeutic strategies in the regeneration of bone.</div></div>\",\"PeriodicalId\":45851,\"journal\":{\"name\":\"Journal of Oral Biosciences\",\"volume\":\"67 3\",\"pages\":\"Article 100672\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1349007925000611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:o - glcn酰化是由O-GlcNAcase (OGA)和o - glcnnac transferase (OGT)介导的一种可逆的翻译后修饰。虽然OGT在分化过程中的定位已经得到了很好的研究,但OGA在成骨细胞成熟过程中的空间调节和作用尚不清楚。本研究探讨了成骨细胞分化过程中OGA的易位及其功能作用。方法:采用免疫组化法测定小鼠颅骨成骨细胞中OGA的定位,体外染色法测定成骨前MC3T3-E1细胞中的OGA定位。生成oga敲除(OGA-KO) MC3T3-E1细胞,利用成骨标志物Sp7、Dlx5和Runx2、碱性磷酸酶(ALP)活性和矿化染色(von Kossa和茜素红)评估分化情况。结果:OGA主要存在于小鼠颅骨成骨细胞的细胞质中。在MC3T3-E1细胞中,OGA在分化第3天从细胞核转移到细胞质,并在第6天稳定下来。OGA-KO细胞分化增强,ALP活性和矿化增加,Sp7和Dlx5表达上调。免疫组化显示Sp7反映了OGA的定位变化,在第6天从细胞核转移到细胞质,而Runx2在整个分化过程中都留在细胞核中。结论:OGA的动态易位是成骨细胞早期分化调控成骨细胞成熟的关键事件。这些见解表明了OGA的一种新的调节作用,并确定了骨再生治疗策略的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
O-GlcNAcase transiently translocates to the cytoplasm and regulates osteoblast differentiation

Objectives

O-GlcNAcylation is a reversible post-translational modification mediated by O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT). Although localization of OGT during differentiation has been well studied, the spatial regulation and role of OGA in the maturation of osteoblasts remains unclear. This study investigated the translocation of OGA and its functional effects during the differentiation of osteoblasts.

Methods

Localization of OGA was assessed in mouse calvarial osteoblastic cells using immunohistochemistry and in pre-osteoblastic MC3T3-E1 cells using in vitro staining. OGA-knockout (OGA-KO) MC3T3-E1 cells were generated to evaluate differentiation using the osteogenic markers, Sp7, Dlx5, and Runx2, alkaline phosphatase (ALP) activity, and mineralization stains (von Kossa and Alizarin red).

Results

OGA was primarily cytoplasmic in osteoblastic cells of the mouse calvaria. In MC3T3-E1 cells, OGA was translocated from the nucleus to the cytoplasm by differentiation Day 3 and was stabilized by Day 6. OGA-KO cells had enhanced differentiation, increased ALP activity and mineralization, and upregulated Sp7 and Dlx5 expression. Immunohistochemistry showed that Sp7 mirrored the shift in localization of OGA, moving from the nucleus to the cytoplasm by Day 6, whereas Runx2 remained in the nucleus throughout differentiation.

Conclusion

Our findings reveal that dynamic translocation of OGA is a key event in early differentiation of osteoblasts that regulates maturation of osteoblasts. These insights suggest a novel regulatory role for OGA and identify potential targets for therapeutic strategies in the regeneration of bone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Oral Biosciences
Journal of Oral Biosciences DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
4.40
自引率
12.50%
发文量
57
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信