Anna N Walsh, Ann G Dunlea, Christopher M Reddy, Collin P Ward
{"title":"消费性塑料中无机添加剂的表征及其光化学释放:对全球和局部生物地球化学循环的影响。","authors":"Anna N Walsh, Ann G Dunlea, Christopher M Reddy, Collin P Ward","doi":"10.1021/acsenvironau.4c00130","DOIUrl":null,"url":null,"abstract":"<p><p>The composition and environmental impacts of inorganic additives in consumer plastics have received little attention within the plastic pollution discipline relative to organic additives. In this work, X-ray florescence spectroscopy, loss-on-ignition, and inductively coupled plasma mass spectrometry were used to qualitatively and quantitatively characterize inorganic additives from up to 80 consumer plastic items. On average, consumer plastic goods contained ∼8% inorganic additives by mass. Concentrations of each element often varied by orders of magnitude. The most common elements detected were from the alkali metal, alkaline earth metal, and first-row transition metal groups, with Ca, Ti, and Al being most abundant. The diversity and abundance of inorganic additives was notably higher in consumer-grade plastics than in standard plastics routinely used to assess the fate and impacts of plastic pollution. Sunlight exposure readily liberated most elements from consumer plastics, typically in the <10 and <1 μm fractions. However, the relative percent of photochemical liberation varied considerably across element and plastic articles, suggesting that formulation is a key control of their liberation from consumer plastics. Compared to average upper continental crust concentrations, Sb and Zn were most enriched, with median enrichment factors of 2 and 1 orders of magnitude, respectfully. Mass balance calculations indicate that plastic pollution may represent a substantial proportion of natural riverine elemental fluxes, particularly for Sb and Zn, which could reach ∼13% and ∼4% of the global natural riverine fluxes by 2060, respectively. Localized impacts in many small, highly polluted rivers could be even larger. However, such impacts are highly dependent on the riverine plastic loading rate to the ocean. Overall, these findings highlight the need for increased consideration of inorganic additives when assessing the fate and impacts of consumer plastics leaking into the environment.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 3","pages":"298-307"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100547/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Inorganic Additives in and Photochemically Liberated from Consumer Plastics: Implications for Global and Local Biogeochemical Cycles.\",\"authors\":\"Anna N Walsh, Ann G Dunlea, Christopher M Reddy, Collin P Ward\",\"doi\":\"10.1021/acsenvironau.4c00130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The composition and environmental impacts of inorganic additives in consumer plastics have received little attention within the plastic pollution discipline relative to organic additives. In this work, X-ray florescence spectroscopy, loss-on-ignition, and inductively coupled plasma mass spectrometry were used to qualitatively and quantitatively characterize inorganic additives from up to 80 consumer plastic items. On average, consumer plastic goods contained ∼8% inorganic additives by mass. Concentrations of each element often varied by orders of magnitude. The most common elements detected were from the alkali metal, alkaline earth metal, and first-row transition metal groups, with Ca, Ti, and Al being most abundant. The diversity and abundance of inorganic additives was notably higher in consumer-grade plastics than in standard plastics routinely used to assess the fate and impacts of plastic pollution. Sunlight exposure readily liberated most elements from consumer plastics, typically in the <10 and <1 μm fractions. However, the relative percent of photochemical liberation varied considerably across element and plastic articles, suggesting that formulation is a key control of their liberation from consumer plastics. Compared to average upper continental crust concentrations, Sb and Zn were most enriched, with median enrichment factors of 2 and 1 orders of magnitude, respectfully. Mass balance calculations indicate that plastic pollution may represent a substantial proportion of natural riverine elemental fluxes, particularly for Sb and Zn, which could reach ∼13% and ∼4% of the global natural riverine fluxes by 2060, respectively. Localized impacts in many small, highly polluted rivers could be even larger. However, such impacts are highly dependent on the riverine plastic loading rate to the ocean. Overall, these findings highlight the need for increased consideration of inorganic additives when assessing the fate and impacts of consumer plastics leaking into the environment.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":\"5 3\",\"pages\":\"298-307\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100547/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenvironau.4c00130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsenvironau.4c00130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Characterization of Inorganic Additives in and Photochemically Liberated from Consumer Plastics: Implications for Global and Local Biogeochemical Cycles.
The composition and environmental impacts of inorganic additives in consumer plastics have received little attention within the plastic pollution discipline relative to organic additives. In this work, X-ray florescence spectroscopy, loss-on-ignition, and inductively coupled plasma mass spectrometry were used to qualitatively and quantitatively characterize inorganic additives from up to 80 consumer plastic items. On average, consumer plastic goods contained ∼8% inorganic additives by mass. Concentrations of each element often varied by orders of magnitude. The most common elements detected were from the alkali metal, alkaline earth metal, and first-row transition metal groups, with Ca, Ti, and Al being most abundant. The diversity and abundance of inorganic additives was notably higher in consumer-grade plastics than in standard plastics routinely used to assess the fate and impacts of plastic pollution. Sunlight exposure readily liberated most elements from consumer plastics, typically in the <10 and <1 μm fractions. However, the relative percent of photochemical liberation varied considerably across element and plastic articles, suggesting that formulation is a key control of their liberation from consumer plastics. Compared to average upper continental crust concentrations, Sb and Zn were most enriched, with median enrichment factors of 2 and 1 orders of magnitude, respectfully. Mass balance calculations indicate that plastic pollution may represent a substantial proportion of natural riverine elemental fluxes, particularly for Sb and Zn, which could reach ∼13% and ∼4% of the global natural riverine fluxes by 2060, respectively. Localized impacts in many small, highly polluted rivers could be even larger. However, such impacts are highly dependent on the riverine plastic loading rate to the ocean. Overall, these findings highlight the need for increased consideration of inorganic additives when assessing the fate and impacts of consumer plastics leaking into the environment.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management