Stephan Beil, Amélie Chabilan, Linda Schuster, Hilmar Börnick, Minh Tan Nguyen, Stefan Stolte
{"title":"序批式反应器与高级氧化工艺相结合的分散式灰水处理在越南的回用。","authors":"Stephan Beil, Amélie Chabilan, Linda Schuster, Hilmar Börnick, Minh Tan Nguyen, Stefan Stolte","doi":"10.1002/wer.70096","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of sufficient clean water has become an increasing problem even in regions with generally humid climates such as Vietnam due to rising water consumption, particularly in densely populated urban areas. The associated problems, such as an increasing scarcity of groundwater, pose major challenges for water management. Appropriate treatment and reuse of graywater, which accounts for a high proportion of total wastewater in households, can contribute significantly to solving this problem. In the present study, a combination of a biologically active sequencing batch reactor (SBR) and subsequent treatment by advanced oxidation processes (AOP) for decentralized graywater treatment is described as a promising option for water reuse in Vietnam. Treatment of synthetic graywater in a model reactor has shown that SBR is a suitable approach for efficient removal of bioavailable organic matter (BOD5 removal >95%), but that the resulting effluent does not meet the required quality criteria for reuse in terms of microbiological contamination, color and micropollutant levels. However, the subsequent AOP remedies these deficiencies. Thus, the number of coliforms could be reduced from 1320 to <1 MPN/100 mL, turbidity to <2 NTU and color by 75% to 4-6 Pt/Co-units. With the exception of terbutryn, the graywater-relevant micropollutants considered could be removed to such an extent by the subsequent UV/H<sub>2</sub>O<sub>2</sub> treatment step within 60 min of treatment time that the requirements of the corresponding Environmental Quality Standard (EQS) values are met. Therefore, a combination of both methods enables efficient graywater treatment for a variety of reuse purposes. PRACTITIONER POINTS: For laboratory investigations, a synthetically produced greywater was produced on the basis of various literature references, which is representative of the Southeast Asia region under consideration. Aerobic biological treatment resulted in a significant improvement in water quality in terms of color and typical general wastewater parameters such as chemical oxygen demand (COD), BOD5, and ammonium. In contrast, the biological stage only insufficiently removed turbidity, coliforms, total P, total N, and a number of selected organic trace substances typical of greywater. Only subsequent treatment using a AOP process (VUV irradiation and peroxide) reduced all the parameters and studied pollutants to such an extent that the water can be reused, for example, for irrigation purposes or for groundwater recharge.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decentralized graywater treatment by a combination of sequencing batch reactor and advanced oxidation processes for reuse in Vietnam.\",\"authors\":\"Stephan Beil, Amélie Chabilan, Linda Schuster, Hilmar Börnick, Minh Tan Nguyen, Stefan Stolte\",\"doi\":\"10.1002/wer.70096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability of sufficient clean water has become an increasing problem even in regions with generally humid climates such as Vietnam due to rising water consumption, particularly in densely populated urban areas. The associated problems, such as an increasing scarcity of groundwater, pose major challenges for water management. Appropriate treatment and reuse of graywater, which accounts for a high proportion of total wastewater in households, can contribute significantly to solving this problem. In the present study, a combination of a biologically active sequencing batch reactor (SBR) and subsequent treatment by advanced oxidation processes (AOP) for decentralized graywater treatment is described as a promising option for water reuse in Vietnam. Treatment of synthetic graywater in a model reactor has shown that SBR is a suitable approach for efficient removal of bioavailable organic matter (BOD5 removal >95%), but that the resulting effluent does not meet the required quality criteria for reuse in terms of microbiological contamination, color and micropollutant levels. However, the subsequent AOP remedies these deficiencies. Thus, the number of coliforms could be reduced from 1320 to <1 MPN/100 mL, turbidity to <2 NTU and color by 75% to 4-6 Pt/Co-units. With the exception of terbutryn, the graywater-relevant micropollutants considered could be removed to such an extent by the subsequent UV/H<sub>2</sub>O<sub>2</sub> treatment step within 60 min of treatment time that the requirements of the corresponding Environmental Quality Standard (EQS) values are met. Therefore, a combination of both methods enables efficient graywater treatment for a variety of reuse purposes. PRACTITIONER POINTS: For laboratory investigations, a synthetically produced greywater was produced on the basis of various literature references, which is representative of the Southeast Asia region under consideration. Aerobic biological treatment resulted in a significant improvement in water quality in terms of color and typical general wastewater parameters such as chemical oxygen demand (COD), BOD5, and ammonium. In contrast, the biological stage only insufficiently removed turbidity, coliforms, total P, total N, and a number of selected organic trace substances typical of greywater. Only subsequent treatment using a AOP process (VUV irradiation and peroxide) reduced all the parameters and studied pollutants to such an extent that the water can be reused, for example, for irrigation purposes or for groundwater recharge.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"97 5\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.70096\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70096","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Decentralized graywater treatment by a combination of sequencing batch reactor and advanced oxidation processes for reuse in Vietnam.
The availability of sufficient clean water has become an increasing problem even in regions with generally humid climates such as Vietnam due to rising water consumption, particularly in densely populated urban areas. The associated problems, such as an increasing scarcity of groundwater, pose major challenges for water management. Appropriate treatment and reuse of graywater, which accounts for a high proportion of total wastewater in households, can contribute significantly to solving this problem. In the present study, a combination of a biologically active sequencing batch reactor (SBR) and subsequent treatment by advanced oxidation processes (AOP) for decentralized graywater treatment is described as a promising option for water reuse in Vietnam. Treatment of synthetic graywater in a model reactor has shown that SBR is a suitable approach for efficient removal of bioavailable organic matter (BOD5 removal >95%), but that the resulting effluent does not meet the required quality criteria for reuse in terms of microbiological contamination, color and micropollutant levels. However, the subsequent AOP remedies these deficiencies. Thus, the number of coliforms could be reduced from 1320 to <1 MPN/100 mL, turbidity to <2 NTU and color by 75% to 4-6 Pt/Co-units. With the exception of terbutryn, the graywater-relevant micropollutants considered could be removed to such an extent by the subsequent UV/H2O2 treatment step within 60 min of treatment time that the requirements of the corresponding Environmental Quality Standard (EQS) values are met. Therefore, a combination of both methods enables efficient graywater treatment for a variety of reuse purposes. PRACTITIONER POINTS: For laboratory investigations, a synthetically produced greywater was produced on the basis of various literature references, which is representative of the Southeast Asia region under consideration. Aerobic biological treatment resulted in a significant improvement in water quality in terms of color and typical general wastewater parameters such as chemical oxygen demand (COD), BOD5, and ammonium. In contrast, the biological stage only insufficiently removed turbidity, coliforms, total P, total N, and a number of selected organic trace substances typical of greywater. Only subsequent treatment using a AOP process (VUV irradiation and peroxide) reduced all the parameters and studied pollutants to such an extent that the water can be reused, for example, for irrigation purposes or for groundwater recharge.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.