脂蛋白(a)与泛血管疾病。

IF 3.9 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruiyan Xu, Zhenwei Wang, Jiayu Dong, Miao Yu, Yue Zhou
{"title":"脂蛋白(a)与泛血管疾病。","authors":"Ruiyan Xu, Zhenwei Wang, Jiayu Dong, Miao Yu, Yue Zhou","doi":"10.1186/s12944-025-02600-y","DOIUrl":null,"url":null,"abstract":"<p><p>Panvascular disease (PVD) is an emerging clinical concept that encompasses a spectrum of atherosclerotic conditions involving multiple major vascular beds, including the coronary, cerebral, peripheral, and valvular arteries. Although not formally recognized as a nosological entity, in this review, PVD is adopted as a conceptual framework to reflect the systemic nature of atherosclerosis affecting vascular territories supplying the heart, brain, and peripheral circulation. This perspective enables a more integrated understanding of disease processes across organ systems that are often studied in isolation. Lipoprotein(a) [Lp(a)] is a genetically regulated, low-density lipoprotein (LDL)-like particle that has garnered increasing attention as an independent pathogenic risk factor for PVD. Accumulating evidence from epidemiological, genetic, and mechanistic studies has confirmed the multifaceted role of Lp(a) in promoting atherogenesis, vascular calcification, inflammation, and thrombogenesis across multiple vascular beds. Elevated Lp(a) levels are associated with increased cardiovascular and cerebrovascular event risk, even after controlling for traditional risk factors. This review systematically outlines the structure, genetic determinants, and pathogenic mechanisms of Lp(a), and synthesizes current clinical evidence regarding its role in various PVD subtypes. The interactions between Lp(a) and traditional cardiovascular risk factors such as hypercholesterolemia, diabetes, and hypertension are explored in depth, highlighting their synergistic contributions to vascular injury and disease progression. Furthermore, sex-based differences in Lp(a)-associated risk, response to therapy, and biological behavior are discussed, providing insights into personalized cardiovascular risk stratification. In addition, the review summarizes current and emerging therapeutic strategies targeting Lp(a), including niacin, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and gene-editing technologies. These advances offer promising new avenues for reducing residual cardiovascular risk attributable to elevated Lp(a). In conclusion, viewing Lp(a)-associated pathology through the lens of PVD provides a comprehensive and unifying approach to understanding its systemic impact. This framework supports the development of integrated risk assessment tools and multi-targeted interventions, ultimately aiming to improve outcomes for patients with complex, multisite vascular involvement.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"24 1","pages":"186"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103022/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lipoprotein(a) and panvascular disease.\",\"authors\":\"Ruiyan Xu, Zhenwei Wang, Jiayu Dong, Miao Yu, Yue Zhou\",\"doi\":\"10.1186/s12944-025-02600-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Panvascular disease (PVD) is an emerging clinical concept that encompasses a spectrum of atherosclerotic conditions involving multiple major vascular beds, including the coronary, cerebral, peripheral, and valvular arteries. Although not formally recognized as a nosological entity, in this review, PVD is adopted as a conceptual framework to reflect the systemic nature of atherosclerosis affecting vascular territories supplying the heart, brain, and peripheral circulation. This perspective enables a more integrated understanding of disease processes across organ systems that are often studied in isolation. Lipoprotein(a) [Lp(a)] is a genetically regulated, low-density lipoprotein (LDL)-like particle that has garnered increasing attention as an independent pathogenic risk factor for PVD. Accumulating evidence from epidemiological, genetic, and mechanistic studies has confirmed the multifaceted role of Lp(a) in promoting atherogenesis, vascular calcification, inflammation, and thrombogenesis across multiple vascular beds. Elevated Lp(a) levels are associated with increased cardiovascular and cerebrovascular event risk, even after controlling for traditional risk factors. This review systematically outlines the structure, genetic determinants, and pathogenic mechanisms of Lp(a), and synthesizes current clinical evidence regarding its role in various PVD subtypes. The interactions between Lp(a) and traditional cardiovascular risk factors such as hypercholesterolemia, diabetes, and hypertension are explored in depth, highlighting their synergistic contributions to vascular injury and disease progression. Furthermore, sex-based differences in Lp(a)-associated risk, response to therapy, and biological behavior are discussed, providing insights into personalized cardiovascular risk stratification. In addition, the review summarizes current and emerging therapeutic strategies targeting Lp(a), including niacin, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and gene-editing technologies. These advances offer promising new avenues for reducing residual cardiovascular risk attributable to elevated Lp(a). In conclusion, viewing Lp(a)-associated pathology through the lens of PVD provides a comprehensive and unifying approach to understanding its systemic impact. This framework supports the development of integrated risk assessment tools and multi-targeted interventions, ultimately aiming to improve outcomes for patients with complex, multisite vascular involvement.</p>\",\"PeriodicalId\":18073,\"journal\":{\"name\":\"Lipids in Health and Disease\",\"volume\":\"24 1\",\"pages\":\"186\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipids in Health and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12944-025-02600-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-025-02600-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

泛血管疾病(PVD)是一个新兴的临床概念,包括涉及多个主要血管床的动脉粥样硬化疾病,包括冠状动脉、脑动脉、外周动脉和瓣膜动脉。虽然没有被正式承认为一个病分学实体,但在这篇综述中,PVD被作为一个概念框架来反映动脉粥样硬化影响供应心脏、大脑和外周循环的血管区域的系统性本质。这一观点使人们能够更全面地了解通常孤立研究的跨器官系统的疾病过程。脂蛋白(a) [Lp(a)]是一种基因调控的低密度脂蛋白(LDL)样颗粒,作为PVD的独立致病危险因素已引起越来越多的关注。来自流行病学、遗传学和机制研究的越来越多的证据证实了Lp(a)在促进动脉粥样硬化、血管钙化、炎症和多血管床血栓形成方面的多方面作用。即使在控制了传统危险因素后,Lp(a)水平升高也与心脑血管事件风险增加相关。本文系统地概述了Lp(a)的结构、遗传决定因素和致病机制,并综合了目前关于其在各种PVD亚型中的作用的临床证据。深入探讨了Lp(a)与传统心血管危险因素(如高胆固醇血症、糖尿病和高血压)之间的相互作用,强调了它们对血管损伤和疾病进展的协同作用。此外,还讨论了Lp(a)相关风险、治疗反应和生物学行为的性别差异,为个性化心血管风险分层提供了见解。此外,本文还总结了目前和新兴的针对Lp(a)的治疗策略,包括烟酸、反义寡核苷酸(ASOs)、小干扰rna (sirna)和基因编辑技术。这些进展为降低Lp(a)升高引起的剩余心血管风险提供了有希望的新途径。总之,通过PVD观察Lp(a)相关病理为了解其系统性影响提供了全面和统一的方法。该框架支持综合风险评估工具和多目标干预措施的发展,最终旨在改善复杂、多部位血管受累患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipoprotein(a) and panvascular disease.

Panvascular disease (PVD) is an emerging clinical concept that encompasses a spectrum of atherosclerotic conditions involving multiple major vascular beds, including the coronary, cerebral, peripheral, and valvular arteries. Although not formally recognized as a nosological entity, in this review, PVD is adopted as a conceptual framework to reflect the systemic nature of atherosclerosis affecting vascular territories supplying the heart, brain, and peripheral circulation. This perspective enables a more integrated understanding of disease processes across organ systems that are often studied in isolation. Lipoprotein(a) [Lp(a)] is a genetically regulated, low-density lipoprotein (LDL)-like particle that has garnered increasing attention as an independent pathogenic risk factor for PVD. Accumulating evidence from epidemiological, genetic, and mechanistic studies has confirmed the multifaceted role of Lp(a) in promoting atherogenesis, vascular calcification, inflammation, and thrombogenesis across multiple vascular beds. Elevated Lp(a) levels are associated with increased cardiovascular and cerebrovascular event risk, even after controlling for traditional risk factors. This review systematically outlines the structure, genetic determinants, and pathogenic mechanisms of Lp(a), and synthesizes current clinical evidence regarding its role in various PVD subtypes. The interactions between Lp(a) and traditional cardiovascular risk factors such as hypercholesterolemia, diabetes, and hypertension are explored in depth, highlighting their synergistic contributions to vascular injury and disease progression. Furthermore, sex-based differences in Lp(a)-associated risk, response to therapy, and biological behavior are discussed, providing insights into personalized cardiovascular risk stratification. In addition, the review summarizes current and emerging therapeutic strategies targeting Lp(a), including niacin, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and gene-editing technologies. These advances offer promising new avenues for reducing residual cardiovascular risk attributable to elevated Lp(a). In conclusion, viewing Lp(a)-associated pathology through the lens of PVD provides a comprehensive and unifying approach to understanding its systemic impact. This framework supports the development of integrated risk assessment tools and multi-targeted interventions, ultimately aiming to improve outcomes for patients with complex, multisite vascular involvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lipids in Health and Disease
Lipids in Health and Disease 生物-生化与分子生物学
CiteScore
7.70
自引率
2.20%
发文量
122
审稿时长
3-8 weeks
期刊介绍: Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds. Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信