{"title":"[配方颗粒与传统银翘散煎剂抗炎、抗菌、镇痛作用的比较]。","authors":"Zhuolin Guo, Zhiheng Zhang, Xindeng Guo, Weiwei Yang, Zhiqing Liang, Jinying Ou, Huihui Cao, Zibin Lu, Linzhong Yu, Junshan Liu","doi":"10.12122/j.issn.1673-4254.2025.05.13","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To compare the anti-inflammatory, antibacterial and analgesic effects of <i>Yinqiao</i> Powder (YQS) formulated granules and decoction.</p><p><strong>Methods: </strong>We first evaluated the anti-inflammatory effects of the two dosage forms of YQS in a LPS-induced RAW 264.7 cell model using RT-qPCR and Western blotting. We further constructed zebrafish models of inflammation by copper sulfate exposure, caudal fin transection, or LPS and Poly (I:C) microinjection, and evaluated anti-inflammatory effects of YQS granules and decoction by examining neutrophil aggregation and HE staining findings. In a mouse model of acute lung injury (ALI) induced by intratracheal LPS instillation, the effects of YQS gavage at 10, 15, and 20 g/kg on lung pathologies were evaluated by calculating lung wet-dry weight ratio and using HE staining, ELISA and Western blotting. The microbroth dilution method was used to evaluate the antibacterial effect of YQS. Mouse pain models established by hot plate and intraperitoneal injection of glacial acetic acid were used to evaluate the analgesic effects of YQS at 10, 15, and 20 g/kg.</p><p><strong>Results: </strong>Both YQS granules and decoction significantly reduced TNF-α, IL-6, and IL-1β expressions and p-STAT3 (Tyr 705) phosphorylation level in LPS-induced RAW 264.7 cells, and obviously inhibited neutrophil aggregation in the zebrafish models. In ALI mice, YQS granules and decoction effectively ameliorated lung injury, lowered lung wet-dry weight ratio, and reduced p-STAT3 (Tyr 705) expression and TNF-α and IL-6 levels. YQS produced obvious antibacterial effect at the doses of 15.63 and 31.25 mg/mL, and significantly reduced body torsion and increased pain threshold in the mouse pain models.</p><p><strong>Conclusions: </strong>The two dosage forms of TQS have similar anti-inflammatory, antibacterial and analgesic effects with only differences in their inhibitory effect on TNF-α, IL-6 and IL-1β mRNA expressions in LPS-induced RAW 264.7 cells.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 5","pages":"1003-1012"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104745/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Comparison of anti-inflammatory, antibacterial and analgesic activities of formulated granules <i>versus</i> traditional decoction of <i>Yinqiao</i> Powder].\",\"authors\":\"Zhuolin Guo, Zhiheng Zhang, Xindeng Guo, Weiwei Yang, Zhiqing Liang, Jinying Ou, Huihui Cao, Zibin Lu, Linzhong Yu, Junshan Liu\",\"doi\":\"10.12122/j.issn.1673-4254.2025.05.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To compare the anti-inflammatory, antibacterial and analgesic effects of <i>Yinqiao</i> Powder (YQS) formulated granules and decoction.</p><p><strong>Methods: </strong>We first evaluated the anti-inflammatory effects of the two dosage forms of YQS in a LPS-induced RAW 264.7 cell model using RT-qPCR and Western blotting. We further constructed zebrafish models of inflammation by copper sulfate exposure, caudal fin transection, or LPS and Poly (I:C) microinjection, and evaluated anti-inflammatory effects of YQS granules and decoction by examining neutrophil aggregation and HE staining findings. In a mouse model of acute lung injury (ALI) induced by intratracheal LPS instillation, the effects of YQS gavage at 10, 15, and 20 g/kg on lung pathologies were evaluated by calculating lung wet-dry weight ratio and using HE staining, ELISA and Western blotting. The microbroth dilution method was used to evaluate the antibacterial effect of YQS. Mouse pain models established by hot plate and intraperitoneal injection of glacial acetic acid were used to evaluate the analgesic effects of YQS at 10, 15, and 20 g/kg.</p><p><strong>Results: </strong>Both YQS granules and decoction significantly reduced TNF-α, IL-6, and IL-1β expressions and p-STAT3 (Tyr 705) phosphorylation level in LPS-induced RAW 264.7 cells, and obviously inhibited neutrophil aggregation in the zebrafish models. In ALI mice, YQS granules and decoction effectively ameliorated lung injury, lowered lung wet-dry weight ratio, and reduced p-STAT3 (Tyr 705) expression and TNF-α and IL-6 levels. YQS produced obvious antibacterial effect at the doses of 15.63 and 31.25 mg/mL, and significantly reduced body torsion and increased pain threshold in the mouse pain models.</p><p><strong>Conclusions: </strong>The two dosage forms of TQS have similar anti-inflammatory, antibacterial and analgesic effects with only differences in their inhibitory effect on TNF-α, IL-6 and IL-1β mRNA expressions in LPS-induced RAW 264.7 cells.</p>\",\"PeriodicalId\":18962,\"journal\":{\"name\":\"南方医科大学学报杂志\",\"volume\":\"45 5\",\"pages\":\"1003-1012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"南方医科大学学报杂志\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12122/j.issn.1673-4254.2025.05.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.05.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Comparison of anti-inflammatory, antibacterial and analgesic activities of formulated granules versus traditional decoction of Yinqiao Powder].
Objectives: To compare the anti-inflammatory, antibacterial and analgesic effects of Yinqiao Powder (YQS) formulated granules and decoction.
Methods: We first evaluated the anti-inflammatory effects of the two dosage forms of YQS in a LPS-induced RAW 264.7 cell model using RT-qPCR and Western blotting. We further constructed zebrafish models of inflammation by copper sulfate exposure, caudal fin transection, or LPS and Poly (I:C) microinjection, and evaluated anti-inflammatory effects of YQS granules and decoction by examining neutrophil aggregation and HE staining findings. In a mouse model of acute lung injury (ALI) induced by intratracheal LPS instillation, the effects of YQS gavage at 10, 15, and 20 g/kg on lung pathologies were evaluated by calculating lung wet-dry weight ratio and using HE staining, ELISA and Western blotting. The microbroth dilution method was used to evaluate the antibacterial effect of YQS. Mouse pain models established by hot plate and intraperitoneal injection of glacial acetic acid were used to evaluate the analgesic effects of YQS at 10, 15, and 20 g/kg.
Results: Both YQS granules and decoction significantly reduced TNF-α, IL-6, and IL-1β expressions and p-STAT3 (Tyr 705) phosphorylation level in LPS-induced RAW 264.7 cells, and obviously inhibited neutrophil aggregation in the zebrafish models. In ALI mice, YQS granules and decoction effectively ameliorated lung injury, lowered lung wet-dry weight ratio, and reduced p-STAT3 (Tyr 705) expression and TNF-α and IL-6 levels. YQS produced obvious antibacterial effect at the doses of 15.63 and 31.25 mg/mL, and significantly reduced body torsion and increased pain threshold in the mouse pain models.
Conclusions: The two dosage forms of TQS have similar anti-inflammatory, antibacterial and analgesic effects with only differences in their inhibitory effect on TNF-α, IL-6 and IL-1β mRNA expressions in LPS-induced RAW 264.7 cells.