Ruili Yang, Yi Xu, Feng Zhu, Xiaojing Ma, Tingting Fan, Hui-Li Wang
{"title":"肠道微生物群:神经表观基因组的潜在调节剂。","authors":"Ruili Yang, Yi Xu, Feng Zhu, Xiaojing Ma, Tingting Fan, Hui-Li Wang","doi":"10.1016/j.jnutbio.2025.109961","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiome has a considerable impact on the central nervous system via the \"gut-brain axis\". Neuroepigenome emerges as the interface between environment and genes, potentially help conveying the signals derived from the microbiome to the brain tissue. While only a limited number of studies have implicated epigenetic roles in the gut-brain axis, this review explores how gut microbiome might impact various brain-based epigenetic mechanisms, including DNA methylation, histone modification, ncRNA and RNA methylation, notably in the context of the specific neural complications. Among the epigenetic mechanisms, histone acetylation was most well-studied with respect to its relationships with gut microbiome, exerting a dynamic influence on gene expression in the brain. Furthermore, the pathways connecting gut bacteria to neuroepigenome were summarized, highlighting the roles of metabolites such as butyrate, propionate, acetate, lactate, and folate. Of particular interest, the roles of butyrate are emphasized due to their outstanding inhibitory activity towards histone deacetylases (HDACs), among other mechanisms. It is worth noting that some indirect gut-brain pathways may also be associated with the interplay between microbiome and neuroepigenome, while IL-6 has been found to effectively transmit microbe-derived signals to histone methylation in brains. Finally, we recapitulate the future perspectives critical to understanding this gut-brain crosstalk, such as clarifying the cause-and-effect relationship, bacterial cross-feeding within the gut, and the mechanisms underlying the site-specific histone modification in the brain. Together, this review attempts to consolidate our current knowledge about the \"microbiome-neuroepigenome interplay\" and propose a conceptual pathway to decipher the gut-brain axis in various neurological conditions.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109961"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut microbiome, a potential modulator of neuroepigenome.\",\"authors\":\"Ruili Yang, Yi Xu, Feng Zhu, Xiaojing Ma, Tingting Fan, Hui-Li Wang\",\"doi\":\"10.1016/j.jnutbio.2025.109961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut microbiome has a considerable impact on the central nervous system via the \\\"gut-brain axis\\\". Neuroepigenome emerges as the interface between environment and genes, potentially help conveying the signals derived from the microbiome to the brain tissue. While only a limited number of studies have implicated epigenetic roles in the gut-brain axis, this review explores how gut microbiome might impact various brain-based epigenetic mechanisms, including DNA methylation, histone modification, ncRNA and RNA methylation, notably in the context of the specific neural complications. Among the epigenetic mechanisms, histone acetylation was most well-studied with respect to its relationships with gut microbiome, exerting a dynamic influence on gene expression in the brain. Furthermore, the pathways connecting gut bacteria to neuroepigenome were summarized, highlighting the roles of metabolites such as butyrate, propionate, acetate, lactate, and folate. Of particular interest, the roles of butyrate are emphasized due to their outstanding inhibitory activity towards histone deacetylases (HDACs), among other mechanisms. It is worth noting that some indirect gut-brain pathways may also be associated with the interplay between microbiome and neuroepigenome, while IL-6 has been found to effectively transmit microbe-derived signals to histone methylation in brains. Finally, we recapitulate the future perspectives critical to understanding this gut-brain crosstalk, such as clarifying the cause-and-effect relationship, bacterial cross-feeding within the gut, and the mechanisms underlying the site-specific histone modification in the brain. Together, this review attempts to consolidate our current knowledge about the \\\"microbiome-neuroepigenome interplay\\\" and propose a conceptual pathway to decipher the gut-brain axis in various neurological conditions.</p>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\" \",\"pages\":\"109961\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnutbio.2025.109961\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.109961","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gut microbiome, a potential modulator of neuroepigenome.
Gut microbiome has a considerable impact on the central nervous system via the "gut-brain axis". Neuroepigenome emerges as the interface between environment and genes, potentially help conveying the signals derived from the microbiome to the brain tissue. While only a limited number of studies have implicated epigenetic roles in the gut-brain axis, this review explores how gut microbiome might impact various brain-based epigenetic mechanisms, including DNA methylation, histone modification, ncRNA and RNA methylation, notably in the context of the specific neural complications. Among the epigenetic mechanisms, histone acetylation was most well-studied with respect to its relationships with gut microbiome, exerting a dynamic influence on gene expression in the brain. Furthermore, the pathways connecting gut bacteria to neuroepigenome were summarized, highlighting the roles of metabolites such as butyrate, propionate, acetate, lactate, and folate. Of particular interest, the roles of butyrate are emphasized due to their outstanding inhibitory activity towards histone deacetylases (HDACs), among other mechanisms. It is worth noting that some indirect gut-brain pathways may also be associated with the interplay between microbiome and neuroepigenome, while IL-6 has been found to effectively transmit microbe-derived signals to histone methylation in brains. Finally, we recapitulate the future perspectives critical to understanding this gut-brain crosstalk, such as clarifying the cause-and-effect relationship, bacterial cross-feeding within the gut, and the mechanisms underlying the site-specific histone modification in the brain. Together, this review attempts to consolidate our current knowledge about the "microbiome-neuroepigenome interplay" and propose a conceptual pathway to decipher the gut-brain axis in various neurological conditions.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.